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INTRODUCTION

Air pollution is considered as a serious environmental threat that influences global climate 
and public health. The increasing concentrations of greenhouse gases and particulate matter 
(PM) in the atmosphere induce changes in the radiative forcing of the atmosphere which leads 
to poor air quality over a location (Keerthi Lakshmi et al., 2024). Surface O3 is a secondary air 
pollutant and a strong greenhouse gas with a high oxidising capacity, and it plays a key role 
in the photochemistry of the atmosphere to change the radiative forcing at the Earth’s surface 
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Air pollution is one of the most destructive environmental issues on the local, regional, and 
global level. Its negative influences go far beyond ecosystems and the economy, harming 
human health and environmental sustainability. By these facts, efficient and accurate 
modelling and forecasting the concentration of air pollutants are vital. Hence, this work 
explores investigate the time series components of surface ozone (O3) and its precursor 
nitrogen dioxide (NO2) and develops a model for predicting O3 variations produced by 
intense fireworks during the Vishu festival over Kannur. Time series methods using 
Stochastic and Recurrent Neural Network (RNN) and Seasonal Autoregressive Integrated 
Moving Average (SARIMA) models are considered the most accurate tools for estimating 
air pollution trends due to their logical flexibility. Model performance is evaluated based 
on statistical measurements indicating an increasing trend in O3 concentration of 0.11 ppb/
year and NO2 of 0.18 ppb/year. Based on the analysis, we found that the SARIMA model 
shows better accuracy with a Mean Squared Error (MSE) of 0.55 and a Root Mean Squared 
Error (RMSE) of 0.74. The broader implications of this study highlight the applicability of 
advanced time series forecasting techniques for air quality monitoring during short-term 
pollution events.
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(Monks et al., 2015). Inhalation of O3 rich air results in severe health issues including reduced 
lung function and oxidative stress (Maji and Namdeo 2021; Li et al., 2016). 

Fireworks related to festival celebrations are one of the potential sources of surface 
O3 produced by air pollution. An increase in surface O3 concentration was observed in the 
fireworks during Vishu festival in Kerala, a coastal location in south Indian state. Vishu festival 
is celebrated on the zodiacal sign of the regional New Year, which usually falls in mid-April. 
The spectacular display of fireworks is the main attraction of this festival which starts on Vishu 
eve (14 April) by setting off fireworks late at night and then continues up to the early morning 
of Vishu day (15 April) with two distinct spells of fire bursting episodes. Only limited reports 
are available describing the detailed chemistry of ozone production during fireworks associated 
with Indian festivals (Resmi et al., 2021; Nishanth et al., 2012; Attri et al., 2001). The air quality 
becomes very poor during the fireworks and a forecast of the air quality well before the festival 
is highly useful to issue proper warnings. 

Very often, air quality forecasts are performed with the help of analytical air pollution models. 
The primary objective of time series modelling is to produce credible models by gathering and 
evaluating data from the past. It is the process of using a model to predict future values based 
on observed historical values.  Forecasting time series finds many applications in various areas 
of science that researchers have to work harder to make a model that matches the data. Artificial 
neural networks (ANN) have recently been identified as a potential tool for modeling time 
series and making predictions. The most extensively used ANNs in forecasting problems are 
multilayer perceptrons (MLPs). Since the number of input neurons helps reveal the relation 
between observations in MLPs, it is quite effective in the performance of the network. A feed 
forward network is a single hidden layer found in the majority of multilayer perceptron models. 

Hamzacebi (2008) developed a Seasonal Artificial Neural Network (SANN) model for 
seasonal time series forecasting. This basic seasonal time series forecasting method has proven 
to be more effective in a system showing nonlinear behavior. Many methods have been reported 
in the literature; most of these are based on the use of neural networks and autoregressive 
integrated moving average (ARIMA) models (Capilla 2016; Paoli et al 2011; Coman et al., 
2008; Basurko et al 2007; Duenas et al 2005; Kumar et al 2004). Both the ARIMA and the Box-
Jenkins models are well-known for their accuracy and forecasting (Kumar et al 2004).

Even though the ARIMA model has been successful in various forecasting purposes, 
it suffers from restriction to its linear form. Very often, linear models are inconsistent for 
composite real-world problems. Thus, input hidden and output neuron numbers are quite vital 
for increasing the performance of ANN forecasting. Subsequently, Recurrent Neural Network 
(RNN) has become popular due to its repeatedly transmitted input through the loop, which 
results a considerable modification to the neural network model’s measurements. Both are also 
noted for how effectively they can predict the future. For this method, the time series must be 
linear and have statistics that resembles the normal distribution SARIMA model was made by 
Box and Jenkins to predict seasonal time series data (Kumar et al 2004; Beldjillali et al 2016). 

The inherent ability of Artificial Neural Networks (ANNs) to express nonlinearity without 
assuming the statistical distribution of data makes them ideal for time series forecasting. When 
the number of error gradients goes up during an update, the network becomes unstable. Bursting 
happens quickly when gradients in the network layer with values greater than 1 are multiplied 
over and over again, but it doesn’t happen when the values are less than 1. Scientists had to 
come up with a new RNN model called long short-term memory to fix these problems (LSTM). 
Long short memory can tackle this problem by controlling how people remember things through 
gates. There are many other neural network structures in the literature because research in this 
field is always going on. But for this work, we will focus on the stochastic and recurrent neural 
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network (RNN) forecasting models. Several research papers are available using ARIMA models 
for the forecast of ozone levels across the globe (Samuel Selvaraj et.al 2013; Arputharaj et al 
2016). Generally, in atmospheric models, time series forecasting is different from numerical 
weather forecasting because it uses data from the past to make predictions about the future.

Hindcast is recognised as a versatile tool related to the process of using historical information 
or data to simulate past conditions or other naturally occurring phenomena from the past. This 
process involves deploying computer models or mathematical simulations, then using the 
collected data, to understand and investigate potential historical events. Hindcasting techniques 
are commonly used in climatological, marine, and other fields to confirm and improve models, 
explain past patterns, and predict future conditions. 

The discrepancy between predicted and observed outcomes in various environmental episodes 
suggests positive results, and the gap between these results leads to dynamics of scientific 
theories. Xu Wanyun et al., (2016) and (2018) conducted a comprehensive study of surface O3 
chemistry and transport at the north-eastern Tibetan Plateau region in China from 1994 to 2013 
using the Mann-Kendall test and Hilbert-Huang transform analysis to investigate the trend and 
periodicity of O3. They found that the influence of valley breeze fluctuations caused unusual 
differences in night and day O3 and seasonal maximum and minimum concentrations due to the 
exchange between the stratosphere and troposphere, revealing boundary layer dynamics. The 
first documented evidence of an inverse relationship between tropospheric and stratospheric 
ozone, due to the low NOx regime of the marine atmosphere, was observed in the marine 
atmosphere at the tropical site in the Eastern Pacific during a solar cycle and the observed 
change was significantly larger than estimated from the photochemical model (Chandra S et 
al., 1999). Zhang Aoxing et al. 2023, have developed an efficient 2D convolutional neural 
network surface ozone ensemble prediction system (2DCNN-SOEF) that showed performance 
comparable to current operational prediction systems and fairly good accuracy required by the 
Chinese authorities with a lead of up to 144 hours of fulfilled time. This makes their ensemble 
forecasting framework versatile to forecast other meteorologically dependent environmental 
risks worldwide. In Poland, multiple linear regression (MLR) and artificial neural network 
(ANN) models were investigated for each season separately using temperature, relative 
humidity, time of day and 1-day lagged surface ozone values. 

The performance of ANN was slightly better than the MLR model and the statistical models 
showed a better performance in all seasons, except in winter (Pawlak et al, 2023). Hata Hiroo et 
al. 2023 quantified the emission inventory of primary air pollutants in Japan to 2050 using WRF 
v 4.3.1 and inputs from the Japanese government socio-economic model. Their findings suggest 
that the implementation of net-zero carbon technology can result in a significant reduction of 
primary emissions of NOx, SO2, and CO by 50-60%, as well as a decline of 10% in primary 
emissions of volatile organic compounds (VOCs) and PM2.5 by 30%.

Here we tried to forecast O3 concentrations during Vishu festival using RNN, ARIMA and 
SARIMA and a comparison of the efficiencies of these models in forecasting the concentration 
of air pollutants in the atmosphere with better precision and the identification of the efficiencies 
appropriate model. 

METHODOLOGY

Description about the study area 
Kannur is the northern district of Kerala lying along the coastal belt of the Arabian Sea, 

which makes it one of the most popular tourist destinations in South India.  Detailed description 
of the analyser used for the study is reported in our earlier publication (Resmi et al. 2021).
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Data preprocessing and decomposition of time series
The initial stage in data science for classification and information retrieval problems is pre-

processing. Before being processed by any machine learning or data mining algorithms, the 
raw data that has been obtained from the actual world would first go through pre-processing 
procedures. Data cleaning, data transformation, and data reduction are all part of the data 
preparation process. Missing data, as well as noise or outlier removal, are addressed during 
data cleaning. The outlier handled using Inter Quartile Range (IQR) and Z-score. The missing 
data handled using the linear interpolation and KNN imputation (Antony et al., 2021). There are 
two approaches that are frequently used to break down time series into their component parts, 
including (i) decomposition by additive hypothesis and (ii) decomposition by multiplicative 
hypothesis. The following time series has been represented as eq. (1) using the decomposition 
by additive hypothesis method:

t t t tT S C Rty = + + +   (1)

Here, yt, Tt, St, Ct, and Rt represent the time series, trend, seasonal, cyclic, and random 
fluctuations at time t respectively.

Sen’s slope estimator and Box-Jenkins modeling for trend test
Magnitude of the trend may be predicted using Sens estimator (Sen., 1968). In accordance 

with Sen, the slope (Ti) of each and every data pair may be calculated as follows:

j kx -x
Ti  for i 1,2...... N

j-k
= =  (2)

where xj and xk are the data values   (j > k) at time j and time k respectively, and the slope 
estimate of Sen estimate is the median of these N values   of Ti and is given by 
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++
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

  (3)

When the value of Qi is positive, the time series is exhibiting an upward trend, and when the 
value of Qi is negative, the time series is exhibiting a downward tendency (Asfaw et al 2017).

Time series modelling and forecasting frequently employ the Box-Jenkins modelling method. 
The four steps of the Box-Jenkins approach are tentative identification (I), parameter estimation 
(II), diagnostic verification (III), and forecasting (IV). When building a Box-Jenkins model, the 
first thing that has to be determined is whether or not a time series is stationary and whether or 
not there is substantial seasonality that needs to be taken into mind (Mashfiqul Huq et al 2018). 
Formal tests, partial autocorrelation functions, and line chart autocorrelation functions are used 
to determine whether a variable is stationary. Non-stationarity in a time series can be recognized 
when a line plot exhibits trend, seasonality, and a very slowly decaying autocorrelation plot. 
This is called random walk-in econometrics, and it can detect non-stationarities even in the 
absence of trends. 

Dickey and Fuller (1979), Phillips and Perron (1986) and Kwiatkowski et al., (1992) have 
provide foundation of official test for stationarity. When it comes to the identification step, 
order of the models is affected by both autocorrelation function and partial autocorrelation 
function. The greatest likelihood approach is then used to conclude the estimate phase. The 
Akaike (1974) information criteria and residual variance are examples of model selection 
criteria. In order to decide which model is superior, we put the modified Akaike information 
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criteria (Nariaki Sugiura1978) and the Bayesian information criterion (Gideon Schwarz., 1978) 
to use. Standardized residual plots of outliers, ACF plots, and Ljung-Box (178) test statistics 
of residuals are used for diagnostic validation. These are used to check for white noise. The 
stability of the model that was chosen may then be examined by using the mean squared error 
and root mean squared error. At long last, the prediction process may begin with the best model 
that was picked.

ARIMA, SARIMA and RNN model
The ARMA model’s capabilities are extended in the Autoregressive Integrated Moving 

Average ARIMA model. It was used in situations when there were indications that the data 
was not stationary. The letters ARIMA(p,d,q), which stand for autoregressive, integrated, 
and moving average, respectively, indicate the ordering of the autoregressive, integrated, and 
moving average components of the model. The p, d, and q in this abbreviation stand for the 
autoregressive, integrated, and moving average components, respectively. An equation that 
describes an ARIMA (p,d,q) model may be expressed as 

  (4)

Where, WN stands for white noise.
 (The d order differencing operator)

 The p order of AR operator)

 (The q order of MA operator)

 is random shocks, c is constant and yt is any time series.
The standard ARIMA model gets renamed to the Seasonal ARIMA (SARIMA) model if it is 
used to a time series that exhibits a seasonal influence. The equation for a generic SARIMA 
model, which is denoted by the notation SARIMA (p,d,q), is as follows

 (5)

Where, 
  (The P order of seasonal AR operator)

 (The Q order of seasonal MA operator)
Both ∅(B) and θB are equivalent to the same thing in the equation (4). ( )1 dd B∇ = −  and 
( )1 DD

S B∇ = −  refer to non-seasonal difference operators as well as seasonal difference operators. 
c is a constant, yt is a time series, and the standard Gaussian white noise process is represented 
by εt. 

Recurrent Neural Network (RNN) can handle data in a certain order. We use them in this 
case to work with time series. Recurrent neural networks make predictions based on both the 
information they are given and the results they have given in the past. This concept is highly 
sensible; we could build neural networks that advance values in time. But simple solutions 
like this rarely work the way they are supposed to. It’s hard to teach them things, and they 
forget. Instead, we need a machine with some form of memory. Long-term memory and gated 
recurrent unit are two common and efficient RNN models.
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Long-term short-term memory (LSTM)
Hochreiter and Schmidhuber (1997) showed that long-term short-term memory is a neural 

network memory unit controlled by gates. It consists of three gates that control how the memory 
works. Backpropagation could be used to learn the weights for these simple weighted-sum 
logistic functions. It shows that the LSTM fits right in, even if the neural network and its 
training process seem complicated. Without additional training or optimization, it is capable 
of learning what necessary, storing relevant information in memory is, and retrieving that 
information when needed. Cell state (9), representing long-term memory, is controlled by the 
input gate (6) and forget gate (7). Priority is given to the information stored in memory location, 
which corresponds to the output vector or hidden state (10) created by the output gate (8). 
This memory mechanism provides the network with long-term recall, a skill that was notably 
missing in pure recurrent neural networks.

 
( )t i i i t 1 ii sigmoid Wx U h b−= + +    (6)

t f t f t 1 ff sigmoid(W x U h b−= + +  (7)

t o t o t 1 0o sigmoid(W x U h b−= + + ) (8)

t t t 1 t c t c t 1 cc )f c i tanh(W x U h b− −= + + +    (9)

( )t t th o tanh c=   (10)

Confidence Interval (CI)
After generating predictions using a time series model, such as SARIMA or a Recurrent 

Neural Network (RNN), the residuals defined as the differences between the observed values 
and the corresponding predicted values are computed. 

Residual Observed Predicted= −  (11)

The standard deviation ( )σ  of these residuals is then calculated to quantify the variability 
or dispersion in the model’s prediction errors. This standard deviation provides a measure of 
how well the model has captured the underlying data patterns and is a key step in assessing the 
accuracy of the predictions and constructing confidence intervals for future forecasts.

For a 95% confidence interval, it is typically assumed that the residuals follow a normal 
distribution, allowing for the application of the Z-score from a standard normal distribution, 
specifically 1.96 for a 95% confidence level. This assumption is valid under the premise that 
the residuals are normally distributed. In cases where the residuals deviate from normality, 
alternative approaches, such as utilizing a different distribution or employing bootstrapping 
techniques, may be necessary to ensure accurate interval estimation.

The Standard Error (SE) of the predictions is calculated by dividing the standard deviation 
( )σ  by the square root of the number of data points  used in the prediction:

  (12)

The margin of error (MOE) is calculated by multiplying the standard error (SE) by the 
Z-score corresponding to the desired confidence level. For a 95% confidence interval, the 
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Z-score is 1.96. Thus, the margin of error is determined as follows:

 (13)

This provides the range within which the true population parameter is expected to fall with 
95% confidence. The 95% confidence interval is computed by adding and subtracting the margin 
of error (MOE) from the predicted value. Mathematically, this is expressed as:

 CI PredictedValue MOE= ±  (14)

This calculation yields the upper and lower bounds of the confidence interval, which represent 
the range within which the true value is expected to lie with 95% confidence.

RESULTS AND DISCUSSION

Surface O3 variations were studied during Vishu Festival-related fireworks on April 14 and 
15 for 2019, 2020, 2021 and 2022 in Kannur city. The study period is divided into three sections 
viz. Days before Vishu (April 13), Vishu days (April 14, 15) and days after Vishu (April 16). 
Figure 1 shows the 24-hour variation in O3 across the observation center for the days of the 
study period from 2019 to 2022. It can be seen that the diurnal variation in O3 during these 
four years showed a similar pattern with different concentrations. No significant changes were 
noticed in O3 in 2020 as fire extinguishing was banned during the nationwide lockdown to 
combat COVID-19 infection. The surface O3 concentration is used to illustrate the basis of the 
data analysis, modelling and forecasting. 
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Figure 1: Variation of surface O3 during the period of observations 

  

Fig. 1. Variation of surface O3 during the period of observations
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FORECASTING THE CONCENTRATION OF SURFACE O3

Environmental data may be contaminated with errors and glitches that occur during the 
collection or transmission phase. They should therefore be refined before being processed by 
modelling or prediction systems. In this test, we examine the processes of removing outliers, 
fixing missing values, and smoothing. The O3 and NO2 data set over the days of the investigation 
period from 2019 to 2022 is pre-processed for the forecast and is shown in figure 2 (a & b).

The decomposition of surface O3 data, such a s stochastic trends, seasonal changes, and 
random movements in the O3 dataset for the study period is shown in the figure 3 (a, b,c,d) 
and for NO2 is shown in the figure (e,f,g,h) respectively. O3 time series chart is stochastic in 
nature. The inherent randomness of crackers, atmospheric conditions and wind patterns affect 
ozone concentrations. Additionally, uncertainties in data collection methods and the influence 
of random atmospheric variations contribute to the unpredictable behaviour observed in the O3 
time series. These factors may be influenced to form a combined result in the stochastic nature 
of the O3 data. The stochastic trends, seasonal changes, and random movements in the O3 data 
are made abundantly obvious from this figure (the second, third, and bottom panels of figure 3). 

We use the slope of Sen for O3 to determine the actual trend and find that the slope estimate is 
0.0011. The estimated slope (0.11) is positive, so surface O3 is trending up by 0.11 ppb. Strong 
seasonality is evident in both the autocorrelation function (ACF) and partial autocorrelation 
function (PACF) of the surface O3 and NO2 data, consistent with the results presented in figure 4 
(a and b). A seasonal trend is evident in both the ACF and PACF of the O3 data, with most peaks 
occurring within the two confidence intervals. Thus, O3 information can be considered static.

Formal tests such as Augmented Dickey-Fuller (ADF) as well as Phillips-Perron (PP) and 
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) are employed to ensure the stationary nature of O3 

 
   Figure 2: Time series dataset of (a) surface O3 (b) NO2 
  

Fig. 2. Time series dataset of (a) surface O3 (b) NO2
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data. Based on the estimated values   of ADF, PP and their associated p-values, the O3 time series 
data appear to be stable. Based on the estimated values   of ADF and KPSS and their associated 
p-values, the NO2 time series data appear to be stable. The statistical details are presented in 
Table 1.

Construct SARIMA (p,d,q)( P,D,Q) 12 models using the Box-Jenkins modelling approach. 
The O3 data are stationary, so the values   of D and d are ‘0’. As a result, the SARIMA (p, d, q) 
(P, D, Q) 12 model is transformed into the SARIMA (p, 0, q) (P, 0, Q)12 model. Significant 
peaks (Figure 5) were observed at lags 1, 2, 3, and 4 for ACF and lags 1 and 2 for PACF. The 
models under consideration are listed together with the results of the Akaike, Hannan-Quinn, 
and Bayesian information criterion tests are presented in In Table 2. The model SARIMA (1,0,2) 
(2,0,4,12) exhibits the minimum AIC, HQIC, and BIC values among the selected models. 
SARIMA (1, 0, 2) (2,0,4,12) is the best model that was ultimately chosen.

 
Figure 3: Decomposition of (a,b,c,d) surface O3 (e,f,g,h) NO2 data for the study period 

  
Fig. 3. Decomposition of (a,b,c,d) surface O3 (e,f,g,h) NO2 data for the study period
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The residuals are displayed in Figure 5(a) in which they seem to be random and not seasonal 
at all. Figure 5(b) shows that the kernel density estimate (KDE; orange curve) approximately 
coincides with N(0,1) (green curve). With a mean of zero and a standard deviation of one, 
the residuals follow a normal distribution. The red line and blue dots in Figure 5(c) represent 
residuals and normally distributed data with a mean of zero and a standard deviation of 

 
 

Figure 4: (a) Autocorrelation function for surface O3 (b) partial autocorrelations function for 
surface O3 (c) autocorrelation function for NO2 (d) partial function for NO2 
  

Fig. 4. (a) Autocorrelation function for surface O3 (b) partial autocorrelations function for surface O3  
(c) autocorrelation function for NO2 (d) partial function for NO2

Parameter Name of test  
statistic 

Calculate 
value Lag order p-value Comment 

O3 ADF -3.906 17 0.002 Stationary 
PP -3.577 17 0.006 Stationary 

NO2 
ADF -3.709 3 0.004 Stationary 
PP -3.021 20 0.126 Stationary 

KPSS 0.269 17 0.003 Stationary 
 
Table 1: Statistics table for both the ADF, PP and KPSS tests 
  

Table 1. Statistics table for both the ADF, PP and KPSS tests
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one, respectively. Q-Q plotting the residuals displays a linear trend. This results in a normal 
distribution for the residuals. Owing to its high level of accuracy in making predictions, this 
model offers a promising method for predicting the future. The autocorrelation in Fig. 5(d) 
illustrates the residuals from the original data are found to be distinct from the delayed data.

Forecasted values with 95% confidence limit using SARIMA (1,0,2) (2,0,4,12) model for 
surface O3 and SARIMA (1,0,1) (4,0,4,12) for NO2 is shown in figure 6 a and 6b.

The forecasted values shown in figure 7 are highlighted in red colour line. Shaded areas 
often represent a range of uncertainty, such as 95% confidence intervals around a prediction.

When considering LSTM, figure 7 shows line plots of training and evaluation loss values over 
several training periods. See loss curves that look similar to the above, but are not necessarily 
identical, because while performing the transformer model it needs to be started from scratch, 
and the training and evaluation loss values depend on how the model weights are set. But these 
loss curves show how the learning performance changes as the number of epochs goes up. They 

Model AIC BIC HQIC 
(1,0,2) (2,0,1,12) 906.827 931.833 916.876 
(1,0,2) (2,0,2,12) 795.432 823.948 806.894 
(1,0,2) (2,0,3,12) 753.645 785.302 766.387 
(1,0,2) (2,0,4,12) 689.068 723.748 703.046 

 
Table 2: A summary of the criteria for selecting models for the various models 
  

Table 2. A summary of the criteria for selecting models for the various models

Fig. 5. Residuals plot for surface O3. (a) Periodic residuals; (b) histogram of frequency distribution; (c) Q-Q 
plot; (d) autocorrelation

 
Figure 5: Residuals plot for surface O3: (a) Periodic residuals; (b) histogram of frequency 
distribution; (c) Q-Q plot; (d) autocorrelation  
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Figure 6: SARIMA forecast of (a) surface O3 (b) NO2 

  
Fig. 6. SARIMA forecast of (a) surface O3 (b) NO2

 
Figure 7: Line plots of the training and validation loss values over several training epochs 
  

Fig. 7. Line plots of the training and validation loss values over several training epochs
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Figure 8: LSTM for (a) surface O3 (b) NO2 

  
Fig. 8. LSTM for (a) surface O3 (b) NO2

 
Figure 9: (a) Performance measures (b) training and validation loss values over several training 
epochs 
 

Fig. 9. (a) Performance measures (b) training and validation loss values over several training epochs
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also tell us if there are any problems with the study that could cause the model to be under fit 
or over fit. 

Figure 8(a) depicts the LSTM for surface O3 and 8 (b) depicts the LSTM for NO2 with an 
RMSE of 1.21. The sequence of values is critical when dealing with time series data. A simple 
approach for dividing an ordered dataset into train and test datasets. The split point index divides 
the data into training datasets that may be used to train our model with 75% of the observations 
and test the model with the remaining 25%. Finally, we may create predictions using the train 
and test dataset models to see how well the model performs. The predictions must be adjusted to 
match with the original dataset on the x-axis thanks to the way the dataset is produced. The data 
are shown after pre-processing, with the original dataset in blue, the predictions for the training 
dataset in green, and the training dataset in orange. 

LSTM model shows high RMSE compared to stochastic model, due to the less number 
of input values while the LSTM model requires a large number of input values for better 
performance. Based on SARIMA model, figure 9 (a) shows the performance measures of the 
forecasting models. From the figure it’s clear that the MSE is 0.055, RMSE is 0.74, Mean 
Absolute Error (MAE) is 0.74 and Bias (Forecast error) is 0.74. When considering LSTM, 
figure 7 shows line plots of training and evaluation loss values over several training periods. 
These loss curves show how the learning performance changes as the number of epochs goes 
up. They also tell us if there are any problems with the study that could cause the model to be 
under fit or over fit.

CONCLUSION

This is an attempt to forecast the O3 concentration at Kannur from the previous data sets by 
using the Artificial Neural Networks model. An increase in ground-level O3 and its precursor 
NO2 has been detected during the fireworks associated with the Vishu festival, held every year 
on April 14 and 15 in Kerala. Thus, O3 and NO2 data were analyzed for four consecutive days 
from 13 to 16 April 2019 to 2022. Thereby, RNN and SARIMA methods are used successfully 
for the prediction of the surface O3 and NO2 concentration in the following years.

The selected model is highly suitable for forecasting time series. A comparison between the 
expected and observed values can be used accuracy of prediction. Underfitting or overfitting 
can also be avoided by performing this test. Predictive results from statistical tests are analyzed 
in detail. This model predicts surface O3 based on historical data sets of O3 at Kannur. The years 
2019-2021 are used as the training dataset and 2022 as the test dataset. The predicted MSE and 
RMSE are 0.55 and 0.74, respectively. The MSE is fairly low and trending upward at 0.0011 
ppb. Given the ambiguity of the growing trend, the chosen model has high prediction accuracy 
on the test set and may be utilized for future work. The result shows that the SARIMA predicted 
value (orange line) is within the confidence interval (Gray shading) and close to the actual value 
(blue line). The predicted MSE is 0.55, which is quite low. Compared to the SARIMA model’s 
high RMSE value in LSTM, (due to the less number of input values), the LSTM model requires 
a greater number of input values are required for better performance. The anticipated outcomes 
are generally positive. 

The SARIMA model is considered to be one of the best options for O3 and NO2 forecasting 
due to its ability to capture both the temporal and seasonal patterns in O3 data. By incorporating 
autoregressive, differencing, and moving average components, SARIMA models can effectively 
model the time-dependent behavior of ozone concentrations, while the inclusion of seasonal 
parameters allows for the consideration of recurring patterns. This makes SARIMA a suitable 



Pollution 2025, 11(3): 576-592590

choice for forecasting ozone levels, as it can account for both short-term fluctuations and long-
term trends, providing valuable insights for environmental monitoring and decision-making 
processes. Based on the present study, the selected SARIMA model has sufficient predictive 
accuracy to predict future values.

The SARIMA models offer numerous merits over Recurrent Neural Networks (RNN) for 
the analysis of atmospheric O3 and NO2. SARIMA models explicitly capture the seasonal 
patterns in the data through the incorporation of seasonal components. They can effectively 
model and forecast time series with recurring patterns, such as weekly, monthly, or annual 
seasonality. RNN models, on the other hand, may struggle to capture and interpret complex 
seasonal patterns without additional preprocessing or modifications. SARIMA models provide 
interpretable results, allowing for a clear understanding of the underlying factors influencing 
O3 and NO2 levels. The model coefficients represent the autoregressive and moving average 
components, allowing users to understand the impact of different variables on the time series.  
This interpretability can be crucial for policy-making and identifying actionable strategies 
for air quality improvement. SARIMA models can work well with small datasets. They are 
less data-hungry compared to RNN models, which typically require a large amount of data to 
effectively learn the patterns and dependencies in the time series. SARIMA models can provide 
accurate forecasts even with limited historical data, making them suitable for situations where 
data availability is limited.

Furthermore, the appropriate models incorporating the Hindcast protocols is another work 
initiated to observe the variation between observed and predicted surface O3 concentration in 
fireworks over the last decade and we expect a better scenario after analysing seasonal HYSPLIT 
trajectories, which consider the air mass movement.
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