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INTRODUCTION

The increasing impacts of air pollution on human health, the environment, and global 
economies have made air quality prediction a critical research area. Air pollution has been 
forefront identified as a leading cause of respiratory and cardiovascular diseases, where 
particulate matter and certain harmful gases, including nitrogen dioxide (NO2), sulfur dioxide 
(SO2), and carbon monoxide (CO), play the first role (Mao et al., 2024; Wonderling et al., 2024). 
Machine learning and deep learning have enabled incorporating several prediction modeling 
techniques into monitoring and forecasting mechanisms. Usually, statistical models such as 
linear regression and autoregressive integrated moving average (ARIMA) were frequently 
applied in air quality forecasting. However, hybrid and deep learning apps are emerging as 
a new trend of study due to their incapacity to handle very complex and highly non-linear 
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Air pollution is a major global challenge, significantly and directly affecting public health, urban 
sustainability, and environmental policy. Accurate air quality prediction has increasingly become 
essential to address the challenges posed by environmental adversities. This study proposes a 
novel hybrid machine learning model that combines deep learning and advanced ensemble 
techniques to improve air quality prediction. This model combines Deep Neural Network 
(DNN), along with ensemble learning algorithms such as XGBoost, CatBoost, LightGBM, and 
Random Forest as a metamodel to aggregate the predictions. The model was tested on a dataset 
that included environmental aspects ranging from PM2.5, PM10, CO, and NO2 variables to 
socio-economic variables such as proximity to industrial areas and population density. Feature 
selection and data imbalance were handled using RFECV and SMOTE, respectively. The 
tuning of the hyperparameters in the model was done using both TPE implemented by Optuna 
and Bayesian optimization by Keras-Tuner. This model can achieve a remarkable accuracy of 
97.34%, which is superior to conventional approaches. The results present a case for building 
hybrid machine learning techniques for air quality prediction as a basis for intelligent global 
environmental monitoring in an interpretable, accurate, and scalable manner. Future work can 
integrate the real-time incoming data from the Internet of Things (IOT) and extend the model 
concept for multi-prediction benchmarks to other environmental indices, thus broadening its 
horizon and applicability to upcoming global environmental challenges.
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relationships in environmental data (Ramadan et al., 2024; Sun et al., 2021; X. Wang et al., 2024). 
The accuracy and reliability of air quality prediction models have increased recently due to the 
latest advancements in hybrid machine learning techniques (Natarajan et al., 2024; Shankar & 
Arasu, 2023). Most of this focuses on learning deep learning architectures like convolutional 
neural networks (CNNs) and long short-term memories (LSTMs) and using ensemble learning 
methods like eXtreme Gradient Boosting (XGBoost) and Categorical Boosting (CatBoost). 
LSTMs are very good at processing temporal sequences, and CNNs are great at capturing 
spatial dependency and feature extraction from complex environmental datasets (Li et al., 
2023). The prediction robustness and generalizability are improved, as powerful ensemble 
learning techniques combined with these approaches have allowed researchers to address 
the non-linearity and high dimensionality of air pollution data (Dong et al., 2024; Zhao & 
Ye, 2024). In terms of aggregating weak learners and reducing errors by iterative refinement 
processes, ensemble learning techniques like XGBoost and CatBoost are helpful contributions. 
These models reduce bias and variance, thereby enhancing predictive accuracy when processing 
structured environmental data (Ghosh et al., 2023). Moreover, the advanced optimization 
strategies are proposed, i.e., Bayesian hyperparameter tuning and feature selection techniques 
such as Recursive Feature Elimination with cross-validation for identifying the most contributing 
input variables (Awad & Fraihat, 2023). Furthermore, synthetic data augmentation methods, 
such as the Synthetic Minority Over-sampling Technique (SMOTE), integrate well to mitigate 
data imbalance, ensuring the model can effectively learn from the underrepresented pollution 
scenarios. The hybrid approaches introduced in this work are especially deemed useful in air 
quality prediction as they allow to model changes in pollutant dispersion caused by changing 
the processes of pollution source dispersion by different meteorological conditions, industrial 
emissions, and urban population density (Hettige et al., 2024; Hu et al., 2023). This synergy, 
therefore, offers an overall, scalable, and interpretable framework for air quality monitoring that 
takes advantage of both deep learning and ensemble learning techniques.

While the field has come a long way, today’s prediction models on air quality are still 
fraught with several challenges. One of them is that most of these models rely on considerably 
limited and regional datasets - probably making generalization much more difficult concerning 
the different geographies (Hettige et al., 2024; Petrić et al., 2024). As previously mentioned, 
traditional models are very accurate in their results but involve significant complexity in 
computing, meaning that they cannot be used for real-time applications or edge devices. Also, 
most existing models are tailored towards standard pollutants like PM2.5 and PM10, while 
other - socioeconomic and environmental - factors that can contribute to a deep understanding 
of air quality dynamics are omitted. Additionally, evaluation metrics in quite a good number 
of studies are done around some basic measures like accuracy and RMSE, thus failing to 
capture  a wide range of forecasting conditions, including short-term and long-term trends 
(Agbehadji & Obagbuwa, 2024; Khamlich et al., 2023). The high-impact consequence of air 
quality prediction would be on public health, urban sustainability, and environmental policy 
(Jayaraman & Abirami, 2025). Accurate and timely forecasting would enable governments and 
society to put in place proactive intervention against pollution risk  (Hu et al., 2023) Moreover, 
integrating multi-source datasets into high-order machine learning techniques improves the 
dependability of the prediction and reveals the hidden influences on the air quality (Y. Wang 
et al., 2024). Efficient and interpretable hybrid models target earlier techniques’ computational 
and generalizability problems, paving the way for scale-it solutions to satisfy real-time and 
geographical requirements (Rudin, 2019). 

This research proposes a novel hybrid machine learning model for air quality prediction 
to increase accuracy and generalizability by integrating deep learning and ensemble learning 
techniques. This research proposes a novel hybrid machine learning model for air quality 
prediction to increase accuracy and generalizability by integrating deep learning and ensemble 
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learning techniques. This research brings forth one of the most promising innovations in the 
stacking-based hybrid model development, combining deep neural networks (DNN) and 
advanced ensemble learning algorithms like XGBoost, CatBoost, and LightGBM. This model 
combines deep learning features, capable of learning complex relationships, and ensemble 
learning to reduce prediction error in environmental data analysis. This study enhances air 
quality prediction using RFECV for feature selection, Bayesian optimization (Optuna, Keras 
Tuner) for tuning, and SMOTE to handle data imbalance. Unlike previous works, the current 
research includes socioeconomic and environmental factors, aiming for a scalable and IoT-
compatible hybrid model with high accuracy and efficiency.

Theoretical Foundations
Air Quality Prediction

The atmospheric quality prediction uses computational techniques that model and forecast 
the environmental data trends. This is mainly a complicated scenario due to the multiplicity of 
factors that impinge on or result in the concentrations of pollutants such as PM2.5 and PM10, 
conditional phenomena such as temperatures and humidities, and socioeconomic factors. 
Therefore, advanced machine learning or deep learning frameworks have been used to capture 
the multivariate non-linear relationships and high-dimensional patterns hidden in the above data 
sets (Agbehadji & Obagbuwa, 2024; Shankar & Arasu, 2023). Historical statistical methods for 
air quality forecasting have included linear regression and autoregressive integrated moving 
average (ARIMA). These models can be satisfactory for smaller, linear datasets, but most 
prove inadequate when used to register large, non-linear, and multi-sourced data. Furthermore, 
static models could never adapt to the speedily changing environment, limiting their predictive 
accuracy (Chaturvedi, 2024).

Advancements such as inherited algorithms have greatly improved the accuracy of air 
quality forecasting since machine learning and deep learning techniques were introduced. For 
example, Support Vector Machines (SVM) and Random Forests are well-suited to be applied 
to the handling of structured environmental data, while Convolutional Neural Networks and 
Long Short-Term Memory network work together to extract both spatial and temporal data 
for a better estimate of pollutant concentrations ( Ma et al., 2023). Additional developments in 
predictive power have been made through hybrid models with strength combinations of such 
algorithms. It has been shown that combining CNNs for spatial pattern extraction with LSTMs 
for temporal sequence analysis outperforms any standalone model (Gilik et al., 2022; Li et 
al., 2023). Integrating various socioeconomic variables (e.g., proximity to industrial zones or 
population density) and real-time data streams has gained traction for better generalization of 
models. Edge-compatible models in IoT-based systems offer real-time air quality monitoring 
and actionable insights. Future developments in hardware, cloud computing, and ensemble 
learning may offer better impetus for newer innovations in the field (Sharifi et al., 2024). This 
lucid introduction provides the springboard on which an innovative hybrid machine learning 
model stands for the challenges and enhancements in air quality forecast.

Machine Learning Methods in Air Quality Prediction
Machine Learning has transformed air quality predictions by allowing for complex 

relationship and pattern identification within high-dimensional environmental data (Rahman 
et al., 2024). Among the elementary techniques, decision trees and random forests are often 
applied for their simple structure and ability to classify a dataset based on feature importance 
(Scornet, 2023). While decision trees tend to overfit in most instances, random forests solve it 
by combining the outputs of several trees, thus increasing accuracy and robustness, especially 
when missing data is at play (Beaulac & Rosenthal, 2020). Support Vector Machines (SVM) are 
another potent tool for classification and regression, proving remarkably useful for structured 
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datasets. They find a hyperplane that separates the data points with the maximum possible 
margin , thus excelling in tasks such as pollutant threshold detection with a very high precision 
(Djeziri et al., 2022) Similarly, Gradient boosting machines, including advanced variants 
such as XGBoost, CatBoost, and LightGBM, are becoming popular for their efficiency in 
structured data. These models minimize the error of weak learners iteratively (Bentéjac et al., 
2021; Jafarnejad Chaghoshi et al., 2024). These models iteratively minimize the error of weak 
learners. LightGBM has excellent speed and accuracy in large air-quality data sets because it 
grows trees leaf-wise.

Neural networks have further advanced predictive ability by mimicking the human brain’s 
interconnected layers of neurons, thus being most adaptive for difficult, non-linear problems. 
DNNs are proficient in extracting, through Multidimensional air quality measurements, any 
non-linear pattern from the data, while CNNs are tailored for feature extraction from the spatial 
distribution of pollutants. For sequential data, RNNs and their advanced variant, LSTMs, are 
more efficient in analyzing time-series data related to pollutant levels and meteorological 
conditions  (Gilik et al., 2022; Sun et al., 2021). Hybrid models generated a compelling 
approach by combining the powerful features of multiple algorithms to enhance their prediction 
performance. For example, CNNs can capture spatial features while LSTMs can work on 
temporal sequences, making for a perfect complement regarding the spatial-temporal modeling. 
Furthermore, stacking ensemble models would refer to having the output of algorithms like 
XGBoost, CatBoost, or Random Forest integrated using a meta-model, thus improving 
considerably the reliability and generalizability of the prediction (Tsokov et al., 2022).

Feature selection and optimization help build better machine learning models. Techniques 
such as Recursive Feature Elimination with Cross-Validation (RFECV) make the model simpler 
by addressing the varied importance of the variables to reduce redundancy while preserving the 
predictive power. Optimizers such as Optuna and Bayesian hyperparameter tuning will help 
have motors working better by working systematically to find the best stride for sometimes hard 
datasets (Awad & Fraihat, 2023).

Research background
Table 1 presents an investigation into various studies on air quality prediction, detailing the 

issue of authorship, research objective, models applied, datasets, findings, and performances 
as measured in terms of accuracy and RMSE. The table captures the latest developments in 
different deep learning architectures, hybrid models, and optimization methods toward accurate 
predictions and improvements in air quality indices by reducing error margins.

While previous studies have advanced air quality prediction, they often rely on limited 
datasets, complex models unsuitable for real-time use, and a priori evaluation criteria. To address 
these gaps, we developed a novel hybrid model combining DNN, XGBoost, CatBoost, and 
LightGBM with a Random Forest meta-model to increase stability and accuracy. Key innovations 
include using  multi-source data (e.g., environmental, socioeconomic), hyperparameter tuning 
via Optuna and Keras-Tuner, feature selection with RFECV, and data balancing using SMOTE. 
Comprehensive evaluation criteria confirmed the superior performance and generalizability of 
our model.

Research Methodology
A Stacking-based Deep Ensemble Machine Learning Model was designed as the main feature 

of this study. The model is made up of a deep neural network along with other advanced ensemble 
learning models. The DNN is designed to extract complex and nonlinear relationships between 
features and is especially good at learning nonlinear patterns contained in data. The advanced 
methods in ensembles include XGBoost, CatBoost, and LightGBM, which were chosen for 
their high ability on structured data. A Random Forest classifier is then used as the metamodel 
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Table 1. Research background 
 

Authors Article title Goals Model used Dataset Conclusion Accuracy 
/Precision 

Du et al. 
(2019) 

Sample-Evaluation-
Enhanced Machine 

Learning Approach for 
Fault Diagnosis of Hybrid 

Systems 

Forecasting PM2.5 
air quality with high 

accuracy 

 
1D-CNN + 
Bi-LSTM 

Real-world 
datasets (2 

datasets 
evaluated) 

Combined spatial-
temporal feature 

learning significantly 
improves PM2.5 

prediction accuracy. 

High 
prediction 
accuracy 

Chang et al. 
(2020) 

An Ensemble Learning 
Based Hybrid Model for 
Air Pollution Forecasting 

Combine multiple 
forecasting methods 

to improve 
performance 

 
Stacked 

ensemble 
learning 

 
 

Spark + 
TensorFlow 
frameworks

Improved performance 
compared to individual 
models for hourly air 
pollution forecasting. 

Outperformed 
GBTR, LSTM 

models 

Wardana et al. 
(2021) 

Optimising Deep 
Learning at the Edge for 

Accurate Hourly Air 
Quality Prediction 

Design an edge-
compatible hybrid 

model for air 
quality prediction

 
1D-CNN + 

LSTM 

 
8272 hourly 

samples 

Optimized model for 
edge devices with lower 

latency and high 
accuracy. 

RMSE, MAE 
reduced 

significantly 

 
Bhanja and 
Das (2021) 

A Hybrid Deep Learning 
Model for Air Quality 
Time Series Prediction 

Enhance feature 
representation and 
temporal order for 
PM2.5 prediction

 
CNN + 

BiLSTM 

Air quality 
time-series 

data 

Hybrid framework 
outperforms state-of-

the-art models in 
prediction accuracy. 

Best accuracy 
compared to 

baseline 

 
Gilik et al. 

(2022) 

Air Quality Prediction 
Using CNN+LSTM 
Hybrid Architecture 

Predict pollutants 
like ozone, nitrogen 
oxides with spatial-

temporal 
relationships

 
CNN + 
LSTM 

Public air 
quality data 

from multiple 
cities 

CNN-LSTM improves 
prediction by 11-53% 

over traditional LSTMs 
for various pollutants. 

RMSE 
reduced 11-

53% 

 
Zhang et al. 

(2021) 

A hybrid deep learning 
technology for PM2.5 air 

quality forecasting 

Address PM2.5 
volatility using 

frequency-domain 
decomposition 

 
VMD + 
BiLSTM 

 
Chinese city 

datasets 

Hybrid model shows 
improved stability and 

forecasting 
performance over 

EMD-based models. 

 
RMSE lower 
than EMD-

based methods

 
Mengara 

Mengara et al. 
(2022) 

Attention-Based 
Distributed Deep 

Learning Model for Air 
Quality Forecasting 

Leverage attention-
based BiLSTM for 
PM2.5 and PM10 

prediction 

Attention-
based CNN + 

BiLSTM 

South Korea 
traffic and air 

data 

Attention mechanisms 
boost model accuracy; 

high performance 
across short/long-term 

predictions. 

MAE: 5.02 
(short-term); 
22.59 (long) 

 
Quynh et al. 

(2023) 

Enhancing Air Quality 
Prediction Accuracy 
Using Hybrid Deep 

Learning 

Predict PM2.5 and 
PM10 levels with 

hybrid models 

 
Encoder-

STM, 
BiLSTM 

 
Hanoi air 
pollution 
dataset 

Hybrid models with 
extended features 

improve prediction 
accuracy and error 

metrics. 

MAE, RMSE 
low; 

significant 
accuracy 

Xu et al. 
(2023) 

A Hybrid Deep Learning 
Model for Air Quality 

Prediction Based on the 
Time–Frequency Domain 

Relationship 

Predict 
PM2.5/PM10 using 
time-frequency data 

decomposition 

 
Wavelet 

Transform + 
Transformer 

 
Guilin air 

quality data 
(2018-2021) 

Superior prediction 
performance compared 

to MLP, LSTM, and 
Transformer models. 

Best across 
RMSE, MAE 

metrics 

Rajagopal and 
Narayanan 

(2024) 

A Novel Approach for 
Air Quality Index 
Prognostication 

Forecast AQI using 
ensembled deep 

learning 

CNN + 
BiLSTM + 

Autoencoder 

Hybrid AQI 
datasets 
(various 
sources) 

Hybrid optimization 
model outperforms 
traditional methods 
across all evaluation 

metrics. 

 
R²: 0.961; 

RMSE: 11.92; 
MAE: 10.29 

Sigamani 
(2024) 

Air quality index 
prediction with 

optimisation enabled deep 
learning model in IoT 

application 

Develop IoT-based 
DL for air quality 

prediction 

 
DFNN with 

TTSA 

 
Time series 

data 

DFNN optimized by 
TTSA provided 

superior RMSE (0.602), 
MSE, and other 

metrics. 

RMSE: 0.602, 
R2: 0.598 

 
Bhardwaj and 
Ragiri (2024) 

A Deep Learning 
Approach to Enhance Air 

Quality Prediction: 
Comparative Analysis of 

LSTM, LSTM with 
Attention Mechanism and 

BiLSTM 

Compare standard 
LSTM, Attention 

LSTM, BiLSTM for 
AQI prediction 

 
 

LSTM 
variants 

 
 

Comprehensiv
e AQ data 

Attention-based LSTM 
models excel in 

predicting AQI using 
30-day sequences. 

RMSE, MAE 
values show 

improved 
temporal 
modeling 

 
Wang (2024) 

 

 
Air Quality Prediction 

based on Neural Network 

Introduce 
AirPhyNet 
integrating 

atmospheric physics 
for AQ forecasting

 
 

AirPhyNet 

 
Beijing, 

Shenzhen 
datasets 

Physical insights 
significantly improve 
accuracy; surpasses 
state-of-the-art deep 

learning models. 

Better 
accuracy vs 

baselines 

  Solve gradient Quantum- Quantum activation Notable 

Table 1. Research background
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that combines the predictions of the base models and gives the final prediction output. This 
hybrid structure increases the accuracy and generalizability of the model. This model combines 
the predictive power of deep networks and the efficiency of advanced ensemble learning models 
to predict air quality levels accurately. This study has used Python programming language.

Study Area and Data
The data source used in this study is a dataset from the Kaggle website published by Mateen 

and includes information related to air quality and pollution (Mateen., 2024). This dataset is 
based on several real-world sources of air quality and related environmental factors, such as the 
World Health Organization (WHO) and World Bank Data. Table 2 presents the description of 
features in the air quality dataset.

Data Preprocessing
The data used in this study were completely clean and free of missing values, so there was 

no need to replace or manage missing values. StandardScaler was used to standardize the scale 
of numerical features. This process changed the numerical values ​​so that their mean was zero 
and their standard deviation was one. Also, the target variable (Air Quality Levels), which was 
categorical (including the values ​​“good”, “average”, “poor”, and “hazardous”), was converted 
to numerical (0, 1, 2, 3). 

Figure 1 shows a correlation heatmap highlighting the relationships between environmental 
and socioeconomic factors affecting air quality (Kebriaeezadeh et al., 2022). To reduce 
redundancy from highly correlated features (such as PM2.5 and PM10), RFECV with random 
forest was used to select the most influential features through recursive elimination and cross-
validation (Awad & Fraihat, 2023).

Figure 2 shows the feature importance scores from the random forest model, highlighting 
CO as the most influential factor in predicting air quality, followed by proximity to industrial 
areas (Hu et al., 2023). Using RFECV, eight key features—temperature, humidity, PM10, NO2, 

Authors Article title Goals Model used Dataset Conclusion Accuracy 
/Precision 

Dong et al. 
(2024) 

Quantum Optimized 
Hybrid Neural Network 

for AQ Prediction 

issues in NN for 
AQ prediction 

classical CNN Various air 
quality 
datasets 

optimized CNN showed 
superior prediction 

accuracy over 
conventional methods. 

improvement 
in accuracy 

Li and Dong 
(2024) 

 
Quantum LSTM with 

Particle Swarm 
Optimization 

Integrate QLSTM 
and ICEEMDAN 

for time-series AQ 
predictions 

QLSTM with 
PSO 

optimization 

Time-series 
AQ datasets 

ICEEMDAN-QLSTM 
achieved highest 

predictive accuracy by 
reducing data 
complexity. 

Enhanced 
accuracy using 

PSO 

(Fathima  
et al., 2024) 

 
Air Quality Prediction 

Using DL Models 

Compare RNN, 
LSTM, GRU, 
BiLSTM for 

temporal air quality 
prediction

GRU, 
BiLSTM 

Multiple 
pollutants 
datasets 

GRU, LSTM captured 
temporal dependencies; 

GRU provided 
optimized predictions. 

Performance 
metrics varied 

with 
architecture 

 
Nguyen et al. 

(2024) 

 
Hybrid Deep Learning for 

AQI Prediction 

Design hybrid DL 
models integrating 
ARIMA, QPSO, 

CNN, and XGBoost

Attention-
CNN, 

ARIMA, 
LSTM, 

XGBoost

Seoul AQ 
datasets 

ARIMA-CNN-LSTM-
XGBoost model 

excelled in accuracy 
with multi-station 

validation. 

MSE reduced 
by 31.13%, R2 
improved by 

2% 

 
Tejaswi 
(2024) 

 
AIR MAP - DL for 

Smarter AQI Decisions 

Develop a web-
based system for air 
quality and weather 

forecasting 

LSTM 
integrated 
with visual 

tools 

Sensor-
generated data

Real-time predictions 
with advanced 

visualizations enhance 
public and 

governmental decision-
making. 

Enhanced 
usability 
metrics 

 
  

Table 1. Research background
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SO2, CO, proximity to industrial areas, and population density—were selected for optimal 
model performance. As shown in Figure 3, the dataset is unbalanced, with the “good” class 
overrepresented and the “hazardous” class underrepresented, potentially affecting the model’s 
accuracy in minority classes. The SMOTE  method was used to deal with this problem. SMOTE 
is a synthetic data generation method for under-sampled classes (Zhao, 2025).

Table 2. Description of Features 
 

Feature Description Unit Data Type 
Temperature Average temperature of the region Degrees Celsius (°C) Numerical 

Humidity Relative humidity of the region Percentage (%) Numerical 

PM2.5 Concentration of fine particulate matter 
less than 2.5 micrometers µg/m³ Numerical 

PM10 Concentration of particulate matter less 
than 10 micrometers µg/m³ Numerical 

NO2 Nitrogen dioxide concentration Parts per billion (ppb) Numerical 
SO2 Sulfur dioxide concentration Parts per billion (ppb) Numerical 
CO Carbon monoxide concentration Parts per million (ppm) Numerical 

Proximity to Industrial 
Areas Distance to the nearest industrial area Kilometers (km) Numerical 

Population Density Number of people per square kilometer 
in the region People per square kilometer Numerical 

Air Quality Levels 
(Target) 

Air quality classification into Good, 
Moderate, Poor, and Hazardous

Good, Moderate, Poor, and 
Hazardous Categorical 

 
  

Table 2. Description of Features

 

Figure 1. Correlation heatmap of environmental variables, air quality and influencing factors 

  

Fig. 1. Correlation heatmap of environmental variables, air quality and influencing factors
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Modeling
Stacking Ensemble Learning is one of the most powerful algorithms in machine learning that 

enhances accuracy and generalizability by combining the predictions of several base models 
(Dey & Mathur, 2023). In this approach, various models act as submodels (base models), and 
each creates independent predictions, serving as input to a higher-level model known as a Meta-
Model (Nukui & Onogi, 2023). The meta-model then uses all these predictions to provide the 
final output. The basic intention behind stacking is to harness the strength of each base model 
in identifying certain patterns in the data and, thus, reduce individual errors. In this study, 
we constructed a Deep Ensemble Learning model combining a DNN model with ensemble 

 

Figure 2. Importance of features in air quality prediction using the random forest model 

  

Fig. 2. Importance of features in air quality prediction using the random forest model

 

Figure 3. Distribution of air quality classes in the dataset 

 

Fig. 3. Distribution of air quality classes in the dataset
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learning models. The model is built on a deep neural network tuned by Keras-Tuner and 
Bayesian optimization to capture complex and non-linear relationships between features. At the 
same time, XGBoost, CatBoost, and LightGBM ensemble learning models suitable for working 
with structured data were tuned using Optuna and Bayesian optimization. Meta-modeling 
was performed by stacking forecasts made by the models with the help of the Random Forest 
classifier. The deep ensemble learning proposed here, by harnessing the power of each model, 
enabled improved accuracy and reliability in air quality prediction. 

Deep Neural Network
Deep neural networks are machine-learning models inspired by the human brain and are 

robust enough to extract highly complex and nonlinear relationships between data (Arifuzzaman 
et al., 2023). A DNN was developed, which works with input features and can establish complex 
and nonlinear relationships between them for air quality prediction (Liu et al., 2024). The 
model was built using Keras, and its parameters were tuned using Keras-Tuner and Bayesian 
optimization (Roy et al., 2023). While developing and optimizing the DNN, the ranges for 
parameters to carry out an optimal search were first listed (Chowdhury et al., 2022). The initial 
hyperparameter search space is outlined in Table 3. The purpose of fine-tuning all these settings 
was to create a sufficient search space into which the architecture could potentially fit. 

A search domain is defined with these settings to identify the best combination of 
hyperparameters using Bayesian optimization in Keras-Tuner (Victoria & Maragatham, 2021). 
Table 4 summarizes the architecture and optimal hyperparameter values of the neural network.

Table 3. Initial Settings for Hyperparameter Optimization 
 

Parameter Range or Values Description 
Number of Hidden Layers 3 to 6 The number of hidden layers to explore during optimization. 

Neurons per Layer 64 to 512 The number of neurons in each layer, selected from this range . 
Dropout Rate 0.1 to 0.5 The percentage of neurons randomly dropped for regularization. 
Learning Rate 0.0001 to 0.01 Learning rate for the Adam optimizer . 

Activation Function ReLU Non-linear activation function for hidden layers . 
Epochs 50 The number of full passes through the dataset during training . 

Batch Size 32 The number of samples processed before the model updates its weights. 
 
  

Table 3. Initial Settings for Hyperparameter Optimization

Table 4. Specifications and optimal values ​​of neural network architectureTable 4. Specifications and optimal values of neural network architecture 
 

Parameter Optimized Value Description 
Number of Hidden Layers 5 The best number of hidden layers identified. 

Neurons in Layer 1 128 Optimized number of neurons in the first hidden layer. 
Neurons in Layer 2 448 Optimized number of neurons in the second hidden layer . 
Neurons in Layer 3 448 Optimized number of neurons in the third hidden layer . 
Neurons in Layer 4 256 Optimized number of neurons in the fourth hidden layer . 
Neurons in Layer 5 192 Optimized number of neurons in the fifth hidden layer . 

Dropout Rate (Layer 1) 0/4 Optimized dropout rate for the first hidden layer . 
Dropout Rate (Layer 2) 0/3 Optimized dropout rate for the second hidden layer . 
Dropout Rate (Layer 3) 0/3 Optimized dropout rate for the third hidden layer . 
Dropout Rate (Layer 4) 0/1 Optimized dropout rate for the fourth hidden layer . 
Dropout Rate (Layer 5) 0/4 Optimized dropout rate for the fifth hidden layer . 

Learning Rate 0/001 Optimized learning rate for the Adam optimizer. 
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The proposed architecture consists of an input layer with 8 standard features, 5 optimized 
hidden layers, and an output layer with 4 neurons using Softmax for air quality classification. 
The model was tuned for neurons, dropout (0.1-0.4), and learning rate (0.001) using Adam 
optimizer and sparse cross-entropy loss. Early Stopping and Stratified K-fold cross-validation 
ensured robustness. 

Other Base Models (XGBoost, CatBoost, LightGBM)
XGBoost (Extreme Gradient Boosting) is a boosting algorithm in machine learning based 

on decision trees that draws users’ attention because of its efficiency and wide applicability 
(Mitchell & Frank, 2017). It sequentially boosts a weak decision tree model (Can et al., 
2021). The XGBoost algorithm aims to minimize the model’s overall error rate by increasing 
the importance of incorrectly predicted examples at each step (Bentéjac et al., 2021). This 
algorithm stands out for its extraordinary speed and capability of handling large amounts of 
structured data (Tang, 2024). The CatBoost algorithm is a variation of boosting with decision 
trees designed for handling data with any classification feature (Hancock & Khoshgoftaar, 
2020). The Ordered Boosting algorithm is used to reduce the risk of overfitting and give a better 
level of performance than any other algorithm (Prokhorenkova et al., 2018). It automatically 
processes and encodes the classified data, relieving the need for manual preprocessing. This 
study has employed CatBoost to leverage the strength of error reduction with superior accurate 
predictions (Hancock & Khoshgoftaar, 2020). Due to its high speed, accuracy, and efficiency in 
handling large structured data using Leaf-Wise tree partitioning, LightGBM was chosen as the 
base model (Qiuqian et al., 2025). The optimized metaparameters of the ensemble models are 
shown in Table 5.

Random Forest as a Meta-Model
In this study, Random Forest was used as a meta-model due to its robustness, low underfitting, 

and high generalizability, effectively integrating DNN, XGBoost, CatBoost, and LightGBM 
predictions (Emeç & Yurtsever, 2025; Mirzadeh & Omranpour, 2024).

Comparison of the proposed model within the field of machine learning methods
To benchmark the performance evaluation of the proposed hybrid model, a comparison 

of its results against 12 popular machine learning algorithms is provided. Grid Search was 
used to search the set of optimal hyperparameter values. The algorithms that were used in this 
comparison are presented in Table 6.

Four key metrics in Table 7— accuracy, precision, recall, and F1 score—were calculated 
based on TP, TN, FP, and FN for each class to evaluate the model’s performance in predicting 
air quality levels. These metrics provide a comprehensive view of the classification performance 
across classes. In addition, 5-fold cross-validation was used to ensure the model’s generalizability 
and robustness (Ramadan et al., 2024).

Table 5. Optimal values of hyperparameters for ensemble learning models in the base 
 

Model n_ 
estimators 

max_ 
depth 

learning_ 
rate subsample colsample

_bytree iterations depth l2_leaf_reg num_leaves 

XGBoost 367 7 0/217084 0/731128 0/847117 - - - - 
CatBoost - - 0/299629 - - 826 10 1/805096 - 

LightGBM 276 0 0/060231 0/532938 0/960502 - - - 68 
 
  

Table 5. Optimal values ​​of hyperparameters for ensemble learning models in the base
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Table 6. Comparison of methods and optimal parameters 
 

Model Description References Hyperparameters 

Gradient Boosting 
A combination of decision trees with 

gradual error updates to improve 
predictions.

(Saravani et al., 
2025) 

{'learning_rate': 0.2, 'max_depth': 7, 
'n_estimators': 300} 

AdaBoost 
Boosting small decision trees by 

giving more weight to examples that 
are not classified correctly.

(Ding et al., 2022) {'learning_rate': 1.0, 'n_estimators': 50} 

Random Forest 
A set of independent decision trees 

with random selection of features and 
samples to reduce overfitting. 

 
(Kim, Kim, 

Mahdian, et al., 
2024)

{'max_depth': 20, 'min_samples_split': 2, 
'n_estimators': 200} 

K-Nearest 
Neighbors 

Predicting the new sample category 
based on the class of nearby samples 

in the feature space.
(Kramer, 2013) {'n_neighbors': 3, 'weights': 'distance'} 

Support Vector 
Machine 

Data separation by finding hyperplane 
boundaries in feature space. 

(Kim, Kim, 
Salamattalab, et al., 

2024)
{'C': 10, 'kernel': 'rbf'} 

Decision Tree Classifying data based on the most 
information obtained in each division. 

 
(Charbuty & 

Abdulazeez, 2021)

{'max_depth': 10, 'min_samples_split': 
5} 

Naive Bayes 
Classification based on the 

conditional probability of features and 
the assumption of their independence. 

 
(Hosein & 

Baboolal, 2024) Default Parameters 

Logistic Regression A simple linear model for predicting 
category probabilities. 

 
(Pal, 2021) {'C': 1} 

Ridge Classifier 
A version of logistic regression that 
prevents overfitting by adding an L2 

penalty. 

 
(Hastie, 2020) 

 {'alpha': 0.1} 

Linear Discriminant 
Analysis (LDA) 

Data classification using linear 
combination of features and assuming 

Gaussian distribution of data.
(Zhao et al., 2024) Default Parameters 

Quadratic 
Discriminant 

Analysis (QDA) 

Similar to LDA but using nonlinear 
boundaries to separate classes. (Araveeporn, 2022) Default Parameters 

MLP 
Multilayer neural network with the 

ability to learn nonlinear 
relationships. 

(Noori et al., 2010) 
{'hidden_layer_sizes': (100, 100), 
'activation': 'tanh', 'solver': 'adam', 

'learning_rate_init': 0.001} 

 
  

Table 6. Comparison of methods and optimal parameters

Table 7. Evaluation metrics for machine learning models 
 

Index Definition Formula 

Accuracy The ratio of correct predictions to the total number of samples. 
𝑇𝑇𝑇𝑇 𝑇 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 𝑇 𝑇𝑇𝑇𝑇 𝑇 𝑇𝑇𝑇𝑇 𝑇 𝑇𝑇𝑇𝑇 

Precision The ratio of correctly predicted instances of a class to the total instances 
predicted as that class. 

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 𝑇 𝑇𝑇𝑇𝑇 

Recall The ratio of correctly predicted instances of a class to the total actual instances 
of that class. 

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 𝑇 𝑇𝑇𝑇𝑇 

F1 Score The harmonic mean of Precision and Recall to balance the trade-off between 
them. 

2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  

 
  

Table 7. Evaluation metrics for machine learning models
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RESULTS AND DISCUSSION

In this section, results obtained from the hybrid model have been analyzed and compared 
to other machine learning models. The results of model performance are presented in Table 8.

The study examined how various machine learning models performed in air quality level 
prediction and subsequently concluded that the suggested hybrid model (Proposed Deep Hybrid 
Model) excelled in all the evaluation metrics, including Accuracy, Precision, Recall, and F1 
Score, for any comparison. The accuracy of the proposed hybrid model reached 0.973375, 
representing the peak among all models. The metric states that the model could predict the 
first maximum number of correct judgments for different air quality categories. The models 
closest to this were Gradient Boosting and KNN, offering values of 0.967625 and 0.967125, 
respectively, but unable to match the accuracy of the proposed model. The hybrid model again 
proved its worth in Precision by obtaining a value of 0.972875. This index is particularly critical 
for applications where reduced false positives are desirable. The Gradient Boosting and KNN 
models had accuracies of 0.967637 and 0.967100, respectively, indicating values less than the 
suggested model. The hybrid model had the highest recall index score at 0.972875. The index is 
significant for accurate air quality analyses by providing information about the model’s ability 
to identify positive clusters correctly. Other trees, like the Random Forest and MLP, performed 
well, having a recall score of 0.965250 but still lagging behind the proposed hybrid model in 
this index. The F1 Score considered here indicates that the proposed hybrid model had the 
highest score of 0.972217 compared to the other models, indicating the balance of precision and 
recall for the model, further highlightingthe model’s ability to provide predictions with a good 
balance between reducing false predictions and correctly identifying positive samples. 

CONCLUSIONS

This study introduces a novel hybrid machine learning model that combines deep learning and 
ensemble techniques for air quality prediction, demonstrating exceptional prediction capabilities. 
The hybrid model beats other traditional and advanced machine learning models, on all four 
important evaluation metrics considered for this prediction. This study carries similar findings 
and extensions from prior studies, where CNN-LSTM models and those examined by Zhang 

Table 8. Comparison of results 
 

Model Accuracy Precision Recall F1 Score 
Gradient Boosting 0/967625 0/967637 0/967625 0/967610 

AdaBoost 0/714500 0/719707 0/714500 0/679580 
Random Forest 0/965250 0/965251 0/965250 0/965228 

K-Nearest Neighbors (KNN) 0/967125 0/967100 0/967125 0/966957 
Support Vector Machine (SVM) 0/951125 0/951189 0/951125 0/951105 

Decision Tree 0/926000 0/926882 0/926000 0/926248 
Naive Bayes 0/926750 0/926644 0/926750 0/926635 

Logistic Regression 0/928500 0/928194 0/928500 0/928283 
Ridge Classifier 0/718625 0/748913 0/718625 0/669643 

Linear Discriminant Analysis (LDA) 0/920625 0/920363 0/920625 0/920206 
Quadratic Discriminant Analysis (QDA) 0/926625 0/926446 0/926625 0/926479 

MLP 0/965250 0/965236 0/965250 0/965162 
Proposed Deep Hybrid Model 0.973375 0.972875 0.972875 0.972217 

 

Table 8. Comparison of results
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et al. (2021) showcased enhanced prediction accuracies (e.g., RMSE drop by 11–53%). In this 
study, the introduced hybrid model bears even added merit in terms of diminished error against 
most previous analyses. Unlike other studies that focused only on basic metrics (Bhanja & Das, 
2021; Mengara Mengara et al., 2022), accuracy, precision, recall, and F1 score metrics have 
been introduced in this study aimed at getting a more nuanced view of the model’s performance. 
Using advanced tools like Optuna and Bayesian tuning, the model has surpassed parameter 
optimization for other traditional models CNN-LSTM or BiLSTM in other studies like Gilik et 
al. (2022). The key advantages of the model include consideration of socioeconomic variables 
(for example, proximity to industrial zones and population density), widening the purview of 
prediction, feature selection through RFECV to ensure model simplicity and interpretability, 
and balancing data with SMOTE that will enable better predictions for underrepresented classes.

The hybrid model significantly enhances air quality prediction by ameliorating the 
shortcomings associated with traditional and deep learning approaches, including different 
data set integrations and complex optimization techniques to achieve better accuracy and 
robustness. The model’s scalability makes it more suited to real-time air quality monitoring 
and decision-making. This model has a significant edge over studies conducted earlier. For 
example, Zhang et al. (2021) used a CNN-LSTM model for cities in China, improved the 
modeling of spatial and temporal aspects, but had limited consideration for socio-economic 
factors. Mengara Mengara et al. (2022) used an Attention-CNN-BiLSTM model for Korea with 
improved prediction but not with strong optimization of the relevant parameters. Gilik et al. 
(2022) implemented CNN-LSTM in multiple cities, realizing significant increases in accuracy 
but still facing computational intensity. 

Future research is suggested to extend this prediction model by adding real-time data from 
Internet of Things (IOT) sensors to enhance the prediction accuracy and to improve the model 
applicability. In addition, transfer and federated learning can improve the model’s generalizability 
across regions. Furthermore, integrating climate and industrial indicators, like temperature, 
humidity, and greenhouse gas emissions, into the model will ensure a more complete air quality 
analysis. As an optimization method, metaheuristic optimization techniques can decrease 
computational costs and increase the model’s accuracy. Last, new hybrid learning methods and 
self-explanatory AI models will assist in developing more transparent and practical models for 
environmental decision-making.

GRANT SUPPORT DETAILS

The present research did not receive any financial support.

CONFLICT OF INTEREST 

The authors declare that there is no conflict of interest regarding the publication of this 
manuscript. In addition, authors have completely observed the ethical issues, including 
plagiarism, informed consent, misconduct, data fabrication and/ or falsification, double 
publication and/or submission, and redundancy.

LIFE SCIENCE REPORTING 

No life science threat was practiced in this research.

REFERENCES

Agbehadji, I. E., & Obagbuwa, I. C. (2024). Systematic Review of Machine Learning and Deep Learning 



Mehregan et al.1212

Techniques for Spatiotemporal Air Quality Prediction. Atmosphere, 15(11), 1352. https://doi.org/
https://doi.org/10.3390/atmos15111352 

Araveeporn, A. (2022). Comparing the linear and quadratic discriminant analysis of diabetes disease 
classification based on data multicollinearity. International Journal of Mathematics and Mathematical 
Sciences, 2022(1), 1-12. https://doi.org/https://doi.org/10.1155/2022/7829795 

Arifuzzaman, M., Hasan, M. R., Toma, T. J., Hassan, S. B., & Paul, A. K. (2023). An advanced decision 
tree-based deep neural network in nonlinear data classification. Technologies, 11(1), 1-24. https://doi.
org/https://doi.org/10.3390/technologies11010024 

Awad, M., & Fraihat, S. (2023). Recursive feature elimination with cross-validation with decision tree: 
Feature selection method for machine learning-based intrusion detection systems. Journal of Sensor 
and Actuator Networks, 12(5), 67. https://doi.org/https://doi.org/10.3390/jsan12050067 

Beaulac, C., & Rosenthal, J. S. (2020). BEST: A decision tree algorithm that handles missing values. 
Computational Statistics, 35(3), 1001-1026. https://doi.org/https://doi.org/10.1007/s00180-020-
00987-z 

Bentéjac, C., Csörgő, A., & Martínez-Muñoz, G. (2021). A comparative analysis of gradient boosting 
algorithms. Artificial Intelligence Review, 54, 1937-1967. https://doi.org/https://doi.org/10.1007/
s10462-020-09896-5 

Bhanja, S., & Das, A. (2021). A hybrid deep learning model for air quality time series prediction. 
Indonesian Journal of Electrical Engineering and Computer Science, 22(3), 1611-1618. https://doi.
org/https://doi.org/10.11591/ijeecs.v22.i3.pp1611-1618 

Bhardwaj, D., & Ragiri, P. R. (2024). A Deep Learning Approach to Enhance Air Quality Prediction: 
Comparative Analysis of LSTM, LSTM with Attention Mechanism and BiLSTM. 2024 IEEE Region 
10 Symposium (TENSYMP), 

Can, R., Kocaman, S., & Gokceoglu, C. (2021). A comprehensive assessment of XGBoost algorithm for 
landslide susceptibility mapping in the upper basin of Ataturk dam, Turkey. Applied Sciences, 11(11), 
4993. https://doi.org/https://doi.org/10.3390/app11114993 

Chang, Y.-S., Abimannan, S., Chiao, H.-T., Lin, C.-Y., & Huang, Y.-P. (2020). An ensemble learning 
based hybrid model and framework for air pollution forecasting. Environmental Science and Pollution 
Research, 27, 38155-38168. https://doi.org/https://doi.org/10.1007/s11356-020-09855-1 

Charbuty, B., & Abdulazeez, A. (2021). Classification based on decision tree algorithm for machine 
learning. Journal of applied science and technology trends, 2(01), 20-28. https://doi.org/https://doi.
org/10.38094/jastt20165 

Chaturvedi, P. (2024). Air Quality Prediction System Using Machine Learning Models. Water, Air, & 
Soil Pollution, 235(9), 578. https://doi.org/https://doi.org/10.1007/s11270-024-07390-0 

Chowdhury, A. A., Das, A., Hoque, K. K. S., & Karmaker, D. (2022). A comparative study of 
hyperparameter optimization techniques for deep learning. Proceedings of International Joint 
Conference on Advances in Computational Intelligence: IJCACI 2021, 

Dey, R., & Mathur, R. (2023). Ensemble learning method using stacking with base learner, a comparison. 
International Conference on Data Analytics and Insights, 

Ding, Y., Zhu, H., Chen, R., & Li, R. (2022). An efficient AdaBoost algorithm with the multiple thresholds 
classification. Applied Sciences, 12(12), 5872. https://doi.org/https://doi.org/10.3390/app12125872 

Djeziri, M. A., Djedidi, O., Morati, N., Seguin, J.-L., Bendahan, M., & Contaret, T. (2022). A temporal-
based SVM approach for the detection and identification of pollutant gases in a gas mixture. Applied 
Intelligence, 52(6), 6065-6078. https://doi.org/https://doi.org/10.1007/s10489-021-02761-0 

Dong, Y., Li, F., Zhu, T., & Yan, R. (2024). Air quality prediction based on quantum activation function 
optimized hybrid quantum classical neural network. Frontiers in Physics, 12, 1412664. https://doi.
org/https://doi.org/10.3389/fphy.2024.1412664 

Du, S., Li, T., Yang, Y., & Horng, S.-J. (2019). Deep air quality forecasting using hybrid deep learning 
framework. IEEE Transactions on Knowledge and Data Engineering, 33(6), 2412-2424. https://doi.
org/https://doi.org/10.1109/tkde.2019.2954510 

Emeç, M., & Yurtsever, M. (2025). A novel ensemble machine learning method for accurate air quality 
prediction. International Journal of Environmental Science and Technology, 22(1), 459-476. https://
doi.org/https://doi.org/10.1007/s13762-024-05671-z 

Fathima, M. D., Donavalli, S., & Kambham, H. (2024). Air Quality Prediction using Deep Learning 
models. 2024 International Conference on Advancements in Power, Communication and Intelligent 



Pollution 2025, 11(4): 1199-12151213

Systems (APCI), 
Ghosh, S., Gourisaria, M. K., Sahoo, B., & Das, H. (2023). A pragmatic ensemble learning approach 

for rainfall prediction. Discover Internet of Things, 3(1), 13. https://doi.org/https://doi.org/10.1007/
s43926-023-00044-3 

Gilik, A., Ogrenci, A. S., & Ozmen, A. (2022). Air quality prediction using CNN+ LSTM-based hybrid 
deep learning architecture. Environmental Science and Pollution Research(29), 1-19. https://doi.org/
https://doi.org/10.1007/s11356-021-16227-w 

Hancock, J. T., & Khoshgoftaar, T. M. (2020). CatBoost for big data: an interdisciplinary review. Journal 
of big data, 7(1), 94. https://doi.org/https://doi.org/10.1186/s40537-020-00369-8 

Hastie, T. (2020). Ridge regularization: An essential concept in data science. Technometrics, 62(4), 426-
433. https://doi.org/https://doi.org/10.1080/00401706.2020.1791959 

Hettige, K. H., Ji, J., Xiang, S., Long, C., Cong, G., & Wang, J. (2024). Airphynet: Harnessing physics-
guided neural networks for air quality prediction. arXiv preprint arXiv:2402.03784, 2, 1-16. https://
doi.org/https://doi.org/10.48550/arxiv.2402.03784 

Hosein, P., & Baboolal, K. (2024). Bayes Classification using an approximation to the Joint Probability 
Distribution of the Attributes. International Conference on Deep Learning Theory and Applications, 

Hu, Y., Li, Q., Shi, X., Yan, J., & Chen, Y. (2023). Multi-spatial Multi-temporal Air Quality Forecasting 
with Integrated Monitoring and Reanalysis Data. arXiv preprint arXiv:2401.00521, 1. https://doi.
org/https://doi.org/10.48550/arxiv.2401.00521 

Jafarnejad Chaghoshi, A., Rezasoltani, A., & Khani, A. M. (2024). Unleashing the Power of Ensemble 
Learning: Predicting National Ranks in Iran’s University Entrance Examination. Industrial Management 
Journal, 16(3), 457-481. https://doi.org/https://doi.org/10.22059/imj.2024.381521.1008178 

Jayaraman, S., & Abirami, S. (2025). Enhancing urban air quality prediction using time-based-spatial 
forecasting framework. Scientific Reports, 15(1), 4139. https://doi.org/https://doi.org/10.1038/
s41598-024-83248-z 

Kebriaeezadeh, S., Ghodduosi, J., Alesheikh, A. A., Arjmandi, R., & Mirzahosseini, S. A. (2022). 
Analyzing trend and factors affecting air quality in urban areas: a case study in Isfahan-metropolis, 
Iran. Environmental Sciences, 20(2), 171-184. 

Khamlich, M., Stabile, G., Rozza, G., Környei, L., & Horváth, Z. (2023). A physics-based reduced order 
model for urban air pollution prediction. Computer Methods in Applied Mechanics and Engineering, 
417, 116416. https://doi.org/https://doi.org/10.48550/arxiv.2305.04575 

Kim, H. I., Kim, D., Mahdian, M., Salamattalab, M. M., Bateni, S. M., & Noori, R. (2024). Incorporation 
of water quality index models with machine learning-based techniques for real-time assessment of 
aquatic ecosystems. Environmental Pollution, 355, 124242. https://doi.org/https://doi.org/10.1016/j.
envpol.2024.124242 

Kim, H. I., Kim, D., Salamattalab, M. M., Mahdian, M., Bateni, S. M., & Noori, R. (2024). Machine 
learning-based modeling of surface water temperature dynamics in arctic lakes. Environmental 
Science and Pollution Research, 31(49), 59642-59655. https://doi.org/https://doi.org/10.1007/
s11356-024-35173-x 

Kramer, O. (2013). Dimensionality reduction with unsupervised nearest neighbors (Vol. 51). Springer. 
https://doi.org/https://doi.org/10.1007/978-3-642-38652-7_2 

Li, F., & Dong, Y. (2024). Air quality prediction based on improved quantum long short-term memory 
neural networks. Physica Scripta, 99(8), 085035. https://doi.org/https://doi.org/10.1088/1402-4896/
ad619a 

Li, Y., Jiang, T., Gu, H., Lu, W., Wu, Q., & Yu, Y. (2023). Air Quality Index Prediction Based on CNN-
LSTM-Attention Hybrid Modeling. 2023 International Conference on the Cognitive Computing and 
Complex Data (ICCD), 

Liu, H., Cheng, J., & Liao, W. (2024). Deep neural networks are adaptive to function regularity and data 
distribution in approximation and estimation. arXiv preprint arXiv:2406.05320, 1. https://doi.org/
https://doi.org/10.48550/arxiv.2406.05320 

Ma, X., Chen, T., Ge, R., Xv, F., Cui, C., & Li, J. (2023). Prediction of PM2. 5 concentration using 
spatiotemporal data with machine learning models. Atmosphere, 14(10), 1517. https://doi.org/https://
doi.org/10.3390/atmos14101517 

Mao, Q., Zhu, X., Zhang, X., & Kong, Y. (2024). Effect of air pollution on the global burden of 
cardiovascular diseases and forecasting future trends of the related metrics: a systematic analysis 
from the Global Burden of Disease Study 2021. Frontiers in Medicine, 11, 1472996. https://doi.org/



Mehregan et al.1214

https://doi.org/10.3389/fmed.2024.1472996 
Mateen., M. (2024). Air Quality and Pollution Assessment [Data set] (https://doi.org/https://doi.

org/10.34740/KAGGLE/DS/6197184
Mengara Mengara, A. G., Park, E., Jang, J., & Yoo, Y. (2022). Attention-based distributed deep learning 

model for air quality forecasting. Sustainability, 14(6), 3269. https://doi.org/https://doi.org/10.3390/
su14063269 

Mirzadeh, H., & Omranpour, H. (2024). Extended Random Forest for multivariate air quality forecasting. 
International Journal of Machine Learning and Cybernetics, 16, 1-25. https://doi.org/https://doi.
org/10.1007/s13042-024-02329-7 

Mitchell, R., & Frank, E. (2017). Accelerating the XGBoost algorithm using GPU computing. PeerJ 
Computer Science, 3, e127. https://doi.org/https://doi.org/10.7717/peerj-cs.127 

Natarajan, S. K., Shanmurthy, P., Arockiam, D., Balusamy, B., & Selvarajan, S. (2024). Optimized 
machine learning model for air quality index prediction in major cities in India. Scientific Reports, 
14(1), 6795. https://doi.org/https://doi.org/10.1038/s41598-024-54807-1 

Nguyen, A. T., Pham, D. H., Oo, B. L., Ahn, Y., & Lim, B. T. (2024). Predicting air quality index using 
attention hybrid deep learning and quantum-inspired particle swarm optimization. Journal of big 
data, 11(1), 71. https://doi.org/https://doi.org/10.1186/s40537-024-00926-5 

Noori, R., Hoshyaripour, G., Ashrafi, K., & Araabi, B. N. (2010). Uncertainty analysis of developed ANN 
and ANFIS models in prediction of carbon monoxide daily concentration. Atmospheric Environment, 
44(4), 476-482. https://doi.org/https://doi.org/10.1016/j.atmosenv.2009.11.005 

Nukui, T., & Onogi, A. (2023). An R package for ensemble learning stacking. Bioinformatics Advances, 
3(1), vbad139. https://doi.org/https://doi.org/10.1093/bioadv/vbad139 

Pal, A. (2021). Logistic regression: A simple primer. Cancer Research, Statistics, and Treatment, 4(3), 
551-554. https://doi.org/https://doi.org/10.4103/crst.crst_164_21 

Petrić, V., Hussain, H., Časni, K., Vuckovic, M., Schopper, A., Andrijić, Ž. U., Kecorius, S., Madueno, 
L., Kern, R., & Lovrić, M. (2024). Ensemble Machine Learning, Deep Learning, and Time Series 
Forecasting: Improving Prediction Accuracy for Hourly Concentrations of Ambient Air Pollutants. 
Aerosol and Air Quality Research, 24(12), 230317. https://doi.org/https://doi.org/10.4209/
aaqr.230317 

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2018). CatBoost: unbiased 
boosting with categorical features. Advances in neural information processing systems, 31, 1-11. 
https://doi.org/https://doi.org/10.48550/arxiv.1706.09516 

Qiuqian, W., GaoMin, KeZhu, Z., & Chenchen. (2025). A light gradient boosting machine learning-
based approach for predicting clinical data breast cancer. Multiscale and Multidisciplinary Modeling, 
Experiments and Design, 8(1), 75. https://doi.org/https://doi.org/10.1007/s41939-024-00662-6 

Quynh, T. P. T., Viet, T. N., Thi, H. D., & Manh, K. H. (2023). Enhancing air quality prediction accuracy 
using hybrid deep learning. Int J Environ Sci Dev, 14(2), 155-159. https://doi.org/https://doi.
org/10.18178/ijesd.2023.14.2.1428 

Rahman, M. M., Nayeem, M. E. H., Ahmed, M. S., Tanha, K. A., Sakib, M. S. A., Uddin, K. M. M., & 
Babu, H. M. H. (2024). AirNet: predictive machine learning model for air quality forecasting using 
web interface. Environmental Systems Research, 13(1), 44. https://doi.org/https://doi.org/10.1186/
s40068-024-00378-z 

Rajagopal, K., & Narayanan, K. (2024). A Novel Approach for Air Quality Index Prognostication using 
Hybrid Optimization Techniques. International Research Journal of Multidisciplinary Technovation, 
6(2), 84-99. https://doi.org/https://doi.org/10.54392/irjmt2427 

Ramadan, M. S., Abuelgasim, A., & Al Hosani, N. (2024). Advancing air quality forecasting in Abu 
Dhabi, UAE using time series models. Frontiers in Environmental Science, 12, 1393878. https://doi.
org/https://doi.org/10.3389/fenvs.2024.1393878 

Roy, S., Mehera, R., Pal, R. K., & Bandyopadhyay, S. K. (2023). Hyperparameter optimization for deep 
neural network models: a comprehensive study on methods and techniques. Innovations in Systems 
and Software Engineering, 1-12. https://doi.org/https://doi.org/10.1007/s11334-023-00540-3 

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use 
interpretable models instead. Nature machine intelligence, 1(5), 206-215. https://doi.org/https://doi.
org/10.48550/arxiv.1811.10154 

Saravani, M. J., Noori, R., Jun, C., Kim, D., Bateni, S. M., Kianmehr, P., & Woolway, R. I. (2025). 
Predicting chlorophyll-a concentrations in the world’s largest lakes using Kolmogorov-Arnold 



Pollution 2025, 11(4): 1199-12151215

networks. Environmental Science & Technology, 59(3), 1801-1810. https://doi.org/https://doi.
org/10.1021/acs.est.4c11113 

Scornet, E. (2023). Trees, forests, and impurity-based variable importance in regression. Annales de 
l’Institut Henri Poincare (B) Probabilites et statistiques, 

Shankar, L., & Arasu, K. (2023). Deep Learning Techniques for Air Quality Prediction: A Focus on PM2. 
5 and Periodicity. Migration Letters, 20(S13), 468-484. https://doi.org/https://doi.org/10.59670/
ml.v20is13.6477 

Sharifi, M. S., Aslami, A., Zaheb, H., Abed, I., Shokoori, A. W., & Yona, A. (2024). Modeling the Impact 
of Socio-Economic and Environmental Factors on Air Quality in the City of Kabul. Sustainability, 
16(24), 10969. https://doi.org/https://doi.org/10.3390/su162410969 

Sigamani, S. (2024). Air quality index prediction with optimisation enabled deep learning model in IoT 
application. Environmental Technology, 46(11), 1892–1908. https://doi.org/https://doi.org/10.1080/
09593330.2024.2409993 

Sun, Q., Zhu, Y., Chen, X., Xu, A., & Peng, X. (2021). A hybrid deep learning model with multi-source 
data for PM 2.5 concentration forecast. Air Quality, Atmosphere & Health, 14, 503-513. https://doi.
org/https://doi.org/10.1007/s11869-020-00954-z 

Tang, S. (2024). The box office prediction model based on the optimized XGBoost algorithm in the 
context of film marketing and distribution. Plos one, 19(10), e0309227. https://doi.org/https://doi.
org/10.1371/journal.pone.0309227 

Tejaswi, M. (2024). AIR MAP- Deep Learning Prediction in Air Quality for Smarter Decisions. 
Interantional Journal of Scientific Research in Engineering and Management, 08(05), 1-5. https://
doi.org/https://doi.org/10.55041/ijsrem35317 

Tsokov, S., Lazarova, M., & Aleksieva-Petrova, A. (2022). A hybrid spatiotemporal deep model based 
on CNN and LSTM for air pollution prediction. Sustainability, 14(9), 5104. https://doi.org/https://
doi.org/10.3390/su14095104 

Victoria, A. H., & Maragatham, G. (2021). Automatic tuning of hyperparameters using Bayesian 
optimization. Evolving Systems, 12(1), 217-223. https://doi.org/https://doi.org/10.1007/s12530-020-
09345-2 

Wang, T. (2024). Air Quality Prediction based on Neural Network. Highlights in Science, Engineering 
and Technology, 105, 37-43. https://doi.org/https://doi.org/10.54097/2fsfav47 

Wang, X., Zhang, S., Chen, Y., He, L., Ren, Y., Zhang, Z., Li, J., & Zhang, S. (2024). Air quality 
forecasting using a spatiotemporal hybrid deep learning model based on VMD–GAT–BiLSTM. 
Scientific Reports, 14(1), 17841. https://doi.org/https://doi.org/10.54097/2fsfav47 

Wang, Y., Liu, K., He, Y., Wang, P., Chen, Y., Xue, H., Huang, C., & Li, L. (2024). Enhancing air quality 
forecasting: a novel spatio-temporal model integrating graph convolution and multi-head attention 
mechanism. Atmosphere, 15(4), 418. https://doi.org/https://doi.org/10.1038/s41598-024-68874-x 

Wardana, I. N. K., Gardner, J. W., & Fahmy, S. A. (2021). Optimising deep learning at the edge for 
accurate hourly air quality prediction. Sensors, 21(4), 1064. https://doi.org/https://doi.org/10.3390/
s21041064 

Wonderling, D., Mariani, A., Samarasekera, E. J., Wilkinson, C., Patel, R. S., & Mills, J. (2024). 
Secondary prevention of cardiovascular disease, including cholesterol targets: summary of updated 
NICE guidance. bmj, 384, 1-4. https://doi.org/https://doi.org/10.1136/bmj.q637 

Xu, R., Wang, D., Li, J., Wan, H., Shen, S., & Guo, X. (2023). A hybrid deep learning model for air 
quality prediction based on the time–frequency domain relationship. Atmosphere, 14(2), 405. https://
doi.org/https://doi.org/10.3390/atmos14020405 

Zhang, Z., Zeng, Y., & Yan, K. (2021). A hybrid deep learning technology for PM 2.5 air quality 
forecasting. Environmental Science and Pollution Research, 28, 39409-39422. https://doi.org/https://
doi.org/10.1007/s11356-021-12657-8 

Zhao, M. (2025). Synthetic minority oversampling technique based on natural neighborhood graph with 
subgraph cores for class-imbalanced classification. The Journal of Supercomputing, 81(1), 1-35. 
https://doi.org/https://doi.org/10.1007/s11227-024-06655-z 

Zhao, M., & Ye, N. (2024). High-Dimensional Ensemble Learning Classification: An Ensemble 
Learning Classification Algorithm Based on High-Dimensional Feature Space Reconstruction. 
Applied Sciences, 14(5), 1956. https://doi.org/https://doi.org/10.3390/app14051956 

Zhao, S., Zhang, B., Yang, J., Zhou, J., & Xu, Y. (2024). Linear discriminant analysis. Nature Reviews 
Methods Primers, 4(1), 70. https://doi.org/https://doi.org/10.1038/s43586-024-00346-y 


	A Hybrid Machine Learning Model Based on Deep Learning for Air Quality Prediction  
	ABSTRACT
	Keywords
	INTRODUCTION
	Theoretical Foundations 
	Air Quality Prediction 
	Machine Learning Methods in Air Quality Prediction 
	Research background 
	Research Methodology 
	Study Area and Data 
	Data Preprocessing 
	Modeling
	Deep Neural Network 
	Other Base Models (XGBoost, CatBoost, LightGBM) 
	Random Forest as a Meta-Model 
	Comparison of the proposed model within the field of machine learning methods 

	RESULTS AND DISCUSSION 
	CONCLUSIONS
	GRANT SUPPORT DETAILS 
	CONFLICT OF INTEREST  
	LIFE SCIENCE REPORTING  
	REFERENCES


