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INTRODUCTION

Soil is a non-renewable resource essential for food production and ecosystem services 
(Ferreira et al., 2022). Yet, contamination by heavy metals—persistent, low-mobility elements 
with densities over five times that of water—poses growing risks globally (Ali et al., 2019; 
Chen et al., 2021; Hammam et al., 2022). In agricultural soils, such contamination, especially 
by lead (Pb), threatens productivity and food safety. Traditional assessment methods often fall 
short due to their complexity and cost (Karimi et al., 2017). Digital Soil Mapping (DSM), 
combining geospatial data and machine learning (ML), offers a more efficient and accurate 
alternative (McBratney et al., 2003; Minasny & McBratney, 2016; Padarian et al., 2020).
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The rapid increase in population and economic expansion has resulted in the infiltration of 
environmental pollutants, particularly heavy metals, into the soil, presenting a substantial threat 
to public well-being and reliability of food security. Consequently, awareness and evaluation of 
these elements are key to assessing soil quality and related risks. In this study, machine learning 
modeling (random forest model) and digital mapping were employed to quantify and model lead 
(Pb) contamination using various environmental indices in a section of the urban watershed of 
Shiraz. For this purpose, 148 soil samples were systematically gathered from a depth of 0 to 20 
cm utilizing a randomized sampling approach. After sample preparation, the total Pb content in 
the soil was determined applying standard analytical methods. Pb contamination risk assessment 
was conducted using three environmental indices: Geo-Accumulation Index (Igeo), Enrichment 
Factor (EF), and Contamination Factor (Cƒ). The results indicated that all analyzed samples 
exhibited total Pb concentrations (mean: 7.78 mg/kg) below the recommended standard levels 
for Iran. Based on the Igeo (range: 1.54–4.72), the samples were categorized as moderately 
to severely contaminated. The EF (range: 4.35–39.65) classified the samples as moderately, 
highly, and extremely enriched, while the Cƒ (range: 3.37–29.63) placed the samples in the 
high to very high contamination category. The interpretation of environmental indices confirmed 
low to moderate levels of Pb contamination, primarily influenced by anthropogenic activities. 
Therefore, to ensure sustainable food security, continuous monitoring of Pb concentration 
variations in the studied soils is essential.
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The integration of remote sensing (RS) and ML has gained prominence in recent years 
for monitoring soil contamination. Alongside these tools, biological methods such as 
phytoremediation are proving effective in mitigating heavy metal pollution. For instance, 
Boukaka and Mayache (2020) showed its potential near a landfill in Algeria, while Nguyen Thanh 
et al. (2023) demonstrated enhanced chromium uptake in Solanum nigrum through bacterial 
inoculation. Osuntoki et al. (2022) found that petroleum exposure reduced physiological health 
in cassava. Studies by Fazeli et al. (2019) and Karbassi et al. (2014) further highlighted urban 
and industrial sources of metal contamination, including traffic emissions and mining activity.

Models like MLR, Cubist, and especially Random Forest (RF) are effective in DSM due 
to their ability to handle complex, nonlinear data (Zeraatpisheh et al., 2020; Mousavi et al., 
2020; Khaledian & Miller, 2020). RF accurately predicts soil properties such as texture, organic 
matter, bulk density, salinity, and nutrients (Li et al., 2021; Khosravi et al., 2022; Dharumarajan 
et al., 2022), and DSM is also useful for mapping toxic soil elements (Shahbazi, 2023). Pollution 
indices like Enrichment Factor (EF), Geo-Accumulation Index (Igeo), and Contamination 
Factor (Cƒ) are key for assessing heavy metal contamination and tracing pollution sources, 
especially for toxic metals like Pb and Cd (Adnan et al., 2022; Sahraei et al., 2023). 

The lack of sufficient data on Pb contamination levels in urban areas, particularly in the 
urban watershed soils of Shiraz, was one of the main motivations for conducting this study. 
In these areas, water shortages and farmers’ lack of awareness have led to the widespread 
reliance on urban wastewater for agricultural water supply. Furthermore, the presence of 
various pollution sources in the city, along with its proximity to a major transportation corridor 
to southern Iran and heavy vehicular traffic, has significantly related to the accumulation of 
heavy metal contamination in these regions. Consequently, there is an urgent need to appraise 
the concentration levels and potential hazards of heavy metals in the soils of these areas.

This study, motivated by limited data on Pb contamination in Shiraz’s urban watershed 
influenced by wastewater irrigation and traffic, applies (1) these three indices to assess Pb risk 
comprehensively and (2) spatial analysis of Pb distribution, aiming to quantify concentrations 
and evaluate environmental risks.

MATERIALS AND METHODS

Study area
Figure 1a shows the Shiraz urban watershed in Fars Province, covering about 57203 hectares 

(UTM 665299–632511 E, 3299803–3271794 N, Zone 39). 

Soil sampling and chemical analysis
Using Iso-Cluster classification with maps and expert input (Figure 1b), 148 soil samples (0–

20 cm) were randomly collected with GPS. Samples were prepared and total Pb concentrations 
measured by atomic absorption spectrophotometry using a Shimadzu AA-670 after Aqua Regia 
acid digestion (HCl:HNO₃, 3:1) following Golia et al. (2007).

Utilization of RS data for soil Pb mapping
Using the SCORPAN framework, soil Pb data were integrated with July 2022 Landsat 8 OLI 

(30 m) and DEM inputs to map Pb distribution. Key RS indices and auxiliary variables used are 
summarized in Table 1. To improve model accuracy and eliminate redundancy, variables with 
high multicollinearity (VIF > 10) were excluded (Dormann et al., 2013), followed by Recursive 
Feature Elimination (RFE) with ten-fold cross-validation, which identified 27 key predictors—
including spectral, vegetation, moisture, and topographic features (Table 1)—used in the RF 
model (Breiman, 2000) in RStudio (v3.5.0).
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Fig. 1. The study area is located in Fars Province, Iran (a), with the distribution of soil sampling points 

shown in (b) 

  

Fig. 1. The study area is located in Fars Province, Iran (a), with the distribution of soil sampling points shown in (b)

Table 1. Environmental covariates applied as predictor in the study area 

  

 
Covariates (n=27) 

 

 
Covariate name (abbreviation) Reference 

Topographic 
attributes 

Plan curvature (PlanCurv)

 
 

Wilson and Gallant (2000); Gallant and 
Dowling (2003) 

Profile curvature (ProfCurv)
Topographic wetness index (TWI)

Multi-resolution valley bottom flatness index 
(MRVBF)

Multi-resolution of ridge top flatness index 
(MRRTF)

Topographic position index (TPI) Weiss (2001) 

RS attributes 

Six individual bands (B2, B3, B4, B5, B6, B7) - 
Principal component analysis of six individual bands 

(PCA) (Malone et al., 2009) 

Normalized Difference Vegetation Index (NDVI) Rouse et al. (1974) 
Soil adjusted vegetation index (SAVI) (Gilabert et al., 2002) 

Visible Atmospherically Resistant Index (VARI) (Gitelson  et al., 2002) 
Modified Soil-Adjusted Vegetation Index (MSAVI) (Qi et al., 1994) 

Transformed Vegetation Index (TVI) McDaniel and Haas (1982)
Soil Adjusted Total Vegetation Index (SATVI) (Qi et al., 1994) 

Normalized Difference Moisture Index (NDMI) (Skakun et al., 2003) 
Normalized Difference Water Index (NDWI) Xu (2006) 
Modified Normalized Difference Water Index 

(MNDWI1) Xu (2006) 
Modified Normalized Difference Water Index 

(MNDWI2) Xu (2006) 
Normalized Burn Ratio 1 (NBR1) (Parks et al., 2014) 
Normalized Burn Ratio 2 (NBR2) (Parks et al., 2014) 

Salinity Ratio (SR) (Metternicht and Zinck, 2003)
Clay Minerals Ratio (CMR) (Boettinger et al., 2008) 

Table 1. Environmental covariates applied as predictor in the study area
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Evaluation of model
To evaluate the performance of the RF model, five statistical criteria were applied: R², RMSE, 

MAE, bias, and CCC. To ensure reliable model evaluation and reduce overfitting, ten-fold 
cross-validation was employed. In this method, the dataset is divided into ten parts; each subset 
is used once for validation while the remaining nine are used for training, cycling through all 
combinations (Kohavi, 1995).

Calculation of soil environmental indices
Pollution indices are widely applied to measure soil contamination and evaluate environmental 

risks while pinpointing pollution sources (Bali & Sidhu, 2021). This study calculated three such 
indices: EF, Igeo, and Cƒ. To enhance contamination assessment accuracy, regional background 
values were used. Lacking official geochemical baselines for Shiraz, data from Shakeri et al. 
(2009) were adopted, reporting natural Pb levels around 6.4 mg/kg in deep, undisturbed soils 
unaffected by human activity. These rigorously obtained values serve as reliable local references. 

Generally, to better understand Pb contamination in the study area, a spatial distribution map 
was created using the RF method and R 4.4.2 software (R Development Core Team, 2015). 
Descriptive statistics, including data range and distribution, were analyzed with IBM SPSS 
Statistics 27.

RESULTS AND DISCUSSION

Descriptive statistical analysis of Pb and environmental indices of soil
This study assessed Pb contamination in soils through pollution factor, Enrichment Factor 

(EF), and soil accumulation index. Pb levels ranged from 5.12 to 17.40 mg/kg (mean 7.78 mg/kg). 
The soil accumulation index varied from 1.54 to 4.72 (average 2.74), EF ranged between 4.35 and 
39.65 (mean 10.37), and Cƒ ranged from 3.37 to 29.63 with an average of 7.85 (Table 2).  

Pb contamination across 148 soil samples was assessed using environmental indices. The 
EF ranged from 4.35 to 39.65 (mean: 10.37), indicating average to very high enrichment and 
suggesting strong anthropogenic influence (Hamzenejhad, 2020). Igeo values ranged from 1.54 
to 4.72 (mean: 2.74), classifying the soils as moderately to extremely polluted. The Cƒ varied 
between 3.37 and 29.63 (mean: 7.85), with 66.66% of sites falling in the highly to very highly 
polluted range. Overall, the indices point to moderate to severe Pb pollution across the area. 
The assessment of the three calculated contamination indices, along with field visits to the 
study area, reveals that anthropogenic activities likely play a notable part in the enrichment 
of Pb concentrations in the surface soils of the region. Wang et al. (2020) also noted that Pb is 
primarily influenced by human sources, while Seshan et al. (2010) stated that the use of Igeo 
and EFs can effectively quantify the scale and severity of soil pollution.  Abbasi et al. (2021) 
found an average Pb concentration of 35.7 mg/kg in dust from Shiraz’s 2018 storm, mainly due 
to industrial and traffic sources. Similarly, our results reveal elevated Pb levels near these areas, 
supported by EF, Igeo, and Cƒ indices indicating significant human impact. Generally, in the 

Table 2. Summary of descriptive statistics for measured and predicted parameters in this study (n=148) 
 

 
  

Parameters Min Max Mean 25% 
Quartile Median 75% 

Quartile SD %CV Skewness Kurtosis 

Pb (mg/kg) 5.12 17.40 7.78 7.15 7.57 8.38 1.22 15.68 3.29 24.89 
EF (Pb) 4.35 39.65 10.37 9.32 10.60 11.43 3.05 29.41 5.77 57.21 
Igeo (Pb) 1.54 4.72 2.74 2.63 2.82 2.93 0.35 12.77 -0.16 8.95 
Cƒ (Pb) 3.37 29.63 7.85 7.07 8.02 8.65 2.27 28.91 5.74 56.80 

Table 2. Summary of descriptive statistics for measured and predicted parameters in this study (n=148)
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current research, the Cƒ for Pb exhibited the highest mean value (7.85) among the measured 
samples, highlighting the significant contribution of anthropogenic activities to environmental 
contamination (Wieczorek, J & Baran., 2022). The evaluation of pollution concentrations 
and hazard assessment of heavy metals using the Enrichment Factor (EF) in surface soils of 
southwestern Shiraz revealed that due to human activities, Pb showed severe enrichment in the 
research area (Amiri et al., 2022).

Soil Pb contamination and associated risks were evaluated using geochemical indices (Table 3).

Analysis of the spatial variability map of soil Pb contamination
At 148 sites, Pb contamination was assessed. Figure 2a presents the spatial distribution of Pb 

predicted by the RF model, while Figure 2b illustrates the spatial patterns of Pb concentration 
(Cƒ) along with the area coverage for each contamination level

To better understand Pb spatial variability in Shiraz soils, the Cƒ was used as an integrated 
pollution index. As shown in Figure 2b, 1.11% of the area was non-contaminated, 27.22% 
exhibited low contamination, 47.70% moderate, 23.95% moderate-to-high, and 0.02% high 
contamination. Similar moderate Pb contamination was reported in agricultural soils near 
Urmia Lake, attributed to intensive fertilizer and pesticide use (Mohammadi et al., 2018). 
Overall, the results indicated that a significant portion of the study area exhibited considerable 
Pb enrichment. In other words, human activities, particularly the existence of pollution origins 
like municipal landfills and wastewater treatment facilities, have played a significant part in 
shaping the spatial variability of EF (Pb). The mentioned sources remain key contributors to 
the contamination of PTEs in the region. According to the Iranian Department of Environment 
(DOE), the acceptable soil Pb limit is 75 mg/kg (Fasihi & Hamidi, 2021). In this study, the 
average Pb concentration was 7.78 mg/kg, with all 148 samples below this level. Pb levels were 
also under benchmarks from the Earth’s crust, global soils, and standards by Canada, WHO, 
and USEPA (Table 4). Given the spatial continuity of parent material variations in soils and the 
localized concentration of environmentally destructive human activities, the relative impact of 
natural and human-driven factors on heavy metal concentrations across different locations does 
not exhibit significant variation. Accurate knowledge of the spatial variability patterns of heavy 
metal concentration levels in soils is a precondition for designing effective control programs 
(Yang et al., 2009). Due to consistent parent material and localized human impact, Pb showed 
limited spatial variation. The normal distribution suggests a mainly natural source, consistent 

Table 3. Classification of contamination indices under study 

 
  

Indices Range of indices Soil conditions References 

EF EF < 2 Minimum enrichment (Wang et al., 2018)
 EF = 2 − 5 Average enrichment  
 EF = 5 − 20 High enrichment  
 EF = 20 − 40 Very high enrichment  
 EF > 40 Extremely high enrichment  
Igeo Igeo ≤ 0 Without pollution (Cai et al., 2019)
 0 ≤  Igeo < 1 Without pollution to moderately polluted  
 1 ≤  Igeo < 2 Moderately polluted  
 2 ≤  Igeo < 3 Moderate to severe pollution  
 3 ≤  Igeo < 4 Severely polluted  
 4 ≤  Igeo < 5 Severely to extremely polluted  
 Igeo  > 5 Extremely high pollution  
Cf Cf < 1 Low pollution (Pendias, 2011)
 1 <   Cf  ≤ 3 Moderate pollution  
 3 ≤   Cf  ≤ 6 High pollution  
 Cf ≤ 6 Very high pollution  

Table 3. Classification of contamination indices under study
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with findings by Zhao et al. (2010). 
The spatial map shows the highest Pb levels in Shiraz’s northern, southern, and southwestern 

urban watershed areas, mainly due to human activities near highways and heavy traffic zones. 
Pb accumulation is also linked to wastewater discharge, refineries, agriculture, orchards, and 
dense residential areas. These results align with Mohammadi et al. (2018) and Mousavi et al. 
(2022), who identified pesticides, organic fertilizers, wastewater irrigation, and traffic as major 
Pb sources in soils and water.

Evaluation of RF model performance
The RF model’s ability to predict spatial variation of Pb, EF, Igeo, and Cƒ was tested using 

70% training and 20% test data. Table 5 shows strong performance, with R² values near 1 and 
low RMSE and mean error (ME), confirming high accuracy and reliability. The RF model 
showed strong predictive power for soil Pb, with an R² of 0.87 and low errors (RMSE 0.002, 
MAE 0.0016), confirming its accuracy and reliability for mapping heavy metal pollution in 
urban soils. Model evaluation showed minimal bias, with ME near zero, confirming the RF 
model’s accuracy and efficiency. CCC ranged from 0.30 to 0.34—specifically, 0.34 for Pb, 
0.32 for EF, 0.31 for Igeo, and 0.30 for Cƒ—indicating consistent, unbiased predictions. These 
findings highlight the RF model’s strong performance, supported by RS spectral indices, in 
mapping soil Pb. The next step involved assessing the importance of model covariates.

Ranking of important covariates in the RF model
The importance of covariates for Pb concentration, EF (Pb), Igeo (Pb), and Cƒ (Pb) is 

illustrated in Figures 3a, 3b, 3c, and 3d, respectively.
For Pb estimation, TVI was the most important, followed by NDWI and MSAVI. NDWI is 

 
Fig. 2. The spatial variability map of total Pb concentration in the study area using the RF model (a) and 

the spatial variability of the Cƒ (Pb) in the study area along with the corresponding area for each class (b) 

  

Fig. 2. The spatial variability map of total Pb concentration in the study area using the RF model (a) and the spatial variability 
of the Cƒ (Pb) in the study area along with the corresponding area for each class (b)

Table 4. Total Pb concentration in soil (mg/kg) based on different standards, WHO, USEPA, earth's crust average, global soil 
average, permissible standard limit – Iran, Canadian Standard 

 

 
  

 
WHO 

 
USEPA 

 
Earth's Crust Average 

 

 
Global Soil Average Permissible Standard 

Limit – Iran Canadian Standard 

30 10 14 35 75 70

Table 4. Total Pb concentration in soil (mg/kg) based on different standards, WHO, USEPA, earth’s crust average, global soil 
average, permissible standard limit – Iran, Canadian Standard
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calculated from Green and SWIR bands, while MSAVI is derived from NIR and Red bands. For 
EF (Pb), topographic and vegetation indices such as TPI and VARI, computed from Green, Red, 
and Blue bands, were the key covariates. For Igeo (Pb), Band 6, topographic and soil-vegetation 
related indices were the most essential covariates impacting its spatial variability. With regard 
to Cƒ (Pb), the impact of NDWI, B3 and MNDWI as a subset of water and individual band 3 
were found. For Pb estimation, MSAVI, NBR1, NDVI, and NBR2 were the most influential 
indices. Among individual bands, Band 4 and Band 7 also played significant roles. The covariate 
ranking for Pb closely resembled that for EF (Pb). Moisture indices (NDWI, MNDWI2) and 
geology-related indices (SR, CMR) were key predictors for Cƒ (Pb). These results highlight 
the importance of NIR and SWIR spectral regions in metal concentration estimation, consistent 
with Huang et al. (2020). Vegetation indices like NDVI significantly influenced the prediction 
of Pb, EF (Pb), and Cƒ (Pb). As Shi et al. (2021) noted, NDVI is a key factor in digitally 
mapping zinc (Zn) levels, underscoring how regional conditions strongly affect target variable 
predictions.

CONCLUTION
     
This study assessed soil Pb contamination in Shiraz urban watershed using EF, Igeo, and 

Cƒ indices. Although average Pb levels were below national and global thresholds, moderate 
pollution linked to human activities—such as wastewater irrigation, agriculture, traffic, and 
residential areas—was evident, especially in southern and northeastern zones. The results 

 
 

 
Fig. 3. The prioritized ranking of covariates based on their contribution to the RF model performance Pb 

(a), EF (Pb) (b), Igeo (Pb) (c) and Cf (Pb) (d), %IncMSE: percent increase of the mean squared error 

 

Fig. 3. The prioritized ranking of covariates based on their contribution to the RF model performance Pb (a), EF (Pb) (b), Igeo 
(Pb) (c) and Cf (Pb) (d), %IncMSE: percent increase of the mean squared error

Table 5. The assessment of modelling performance utilizing statistical metrics in calibration and validation dataset within the 
study area (n=148) 

 

    Validation dataset (n=44) (out of bag)     Calibration dataset (n=104) (in the bag) Parameters  
Bias  MAE RMSE  Concordance 2R Bias      MAE RMSE Concordance 2R  
0.020.00640.008 0.340.27 0.010.0016 0.002 0.86 0.87   Pb  
0.000.00240.003 0.320.26 0.000.004 0.005 0.84 0.85   )Pb( EF  
0.03 0.01120.014  0.31 0.25 0.01 0.0064 0.008  0.83  0.84    )PbIgeo (  
0.020.00960.012  0.300.23 0.010.0056 0.007 0.81 0.82   )PbCƒ  ( 

Table 5. The assessment of modelling performance utilizing statistical metrics in calibration and validation dataset within the 
study area (n=148)
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highlight the effectiveness of these indices for contamination evaluation and the need for 
targeted mitigation in affected areas. Future research should use advanced techniques like PCA, 
PMF, or isotopic fingerprinting to better identify pollution sources from industry, traffic, and 
agriculture. Combining these tools with spatial mapping and lab tests will improve targeted 
monitoring. Establishing regional databases and evidence-based management plans is essential 
for effective soil contamination control.
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