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INTRODUCTION

Transportation enriches civilization by facilitating connectivity and economic development; 
however, it significantly impacts environmental quality. The transportation sector is one of the 
primary contributors to increasing pollution levels. Motor vehicles release several atmospheric 
pollutants including carbon monoxide (CO), carbon dioxide (CO₂), oxides of nitrogen (NOₓ) 
such as nitric oxide (NO) and nitrogen dioxide (NO₂), particulate matter (PM2.5 & PM₁₀), and 
volatile organic compounds (VOCs), notably hydrocarbons (HCs) like benzene (Barth et al., 
2000).

In Buenos Aires, vehicular traffic was identified as the main source of CO and NOₓ emissions, 
with ozone formation linked to the mixing of clean air with high-NO emissions (Bogo et al., 
1999). In China, the MOBILE 5 model was employed to estimate emission factors for CO, 
HC, and NOₓ. Despite lower vehicle counts, metropolitan areas exceeded national air quality 
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Roads and highways are vital to a nation's economic and social development. However, the surge 
in transportation demand has led to heightened vehicular emissions, particularly at urban mid-
block sections. This study presents predictive models for estimating pollutant concentrations of 
CO, HCHO, TVOCs, PM₂.₅, and PM10 a Green House Gas (GHG) CO2 based on traffic flow and 
vehicle type data collected across 18 urban mid-blocks in Warangal, Tirupati, and Vijayawada. 
Three models such as MLR, SVR, and ANN were developed, with ANN achieving the highest 
performance (R² > 0.90 for all pollutants). Peak concentrations of CO (1180 ppm) and PM₂.₅ 
(over 100 µg/m³) were observed during evening hours (7–8 PM), coinciding with traffic 
volumes exceeding 4000 PCU/hr. A strong correlation (R² > 0.7) between traffic volume and 
pollutant levels was confirmed across all models. These findings provide actionable insights 
for urban transport planners to forecast and mitigate traffic-related air pollution at mid-block 
sections in similar urban environments.
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standards (Fu et al., 2001). In Los Angeles, it was found that CO and black carbon from heavy-
duty diesel vehicles declined sharply with increased distance from highways (Zhu et al., 2002).

The CAL3QHC model was used to predict Carbon Monoxide (CO) concentrations at signalized 
intersections in a Thai city, utilizing site, traffic, meteorological, and emission parameters as 
input data (Tippichai et al., 2005). Delhi reported that approximately 72% of its air pollution 
was attributed to the transport sector (Goyal et al., 2005). In Hong Kong, traffic emissions 
of CO, NOₓ, and PM₁₀ were modeled based on traffic flow data (Xia & Shao, 2004). A study 
conducted in Calicut demonstrated that simple linear regression models outperformed others, 
such as CALINE4 and IITLS, when comparing CO levels to national standards (Anjaneyulu 
et al., 2008). Additionally, vehicles were confirmed as major VOC sources both inside and 
outside road tunnels (Ho et al., 2009). The influence of synchronized traffic signals on roadside 
pollution concentrations was analyzed in a Southern Italian urban area using the DRACULA 
microsimulation model, with neural networks modeling CO and C6H6 levels based on variable 
signal cycles and offset times (Zito, 2009).

The relationship between traffic flow, vehicle characteristics, and road features with vehicular 
exhaust emissions near intersections was examined using traffic and emission models (Pandian 
et al., 2009).

The COPERT III model applied in Ghana revealed that conventional passenger vehicles 
were significant contributors to emissions (Bonsu et al., 2010). Principal Component Analysis 
(PCA) was used to correlate fuel types of heavy-duty vehicles with emissions of formaldehyde 
and acetaldehyde (Rodrigues et al., 2011). Portable instruments facilitated the development 
of stable modal emission rates under varying driving conditions (Christopher et al., 2012). 
CO concentrations at a signalized intersection in a Malaysian city were predicted using the 
CAL3QHC dispersion model, showing no increase in CO levels from 2006 to 2014 despite a rise 
in vehicle numbers, and remained within national air quality standards (Wee and Ling, 2014). In 
Delhi, it was determined that private vehicles contributed 23–44% of the city’s formaldehyde 
emissions (Nagpure et al., 2016; Masood et al., 2017).

CO emissions were spatially mapped in New Delhi using CALINE4 integrated with ArcGIS 
to identify high-emission zones (Masood et al., 2017). In Nigeria, emissions from diesel 
generators were predicted using multiple linear regression techniques (Akinyemi et al., 2018). 
Elevated road gradients and traffic congestion were found to significantly increase pollutant 
concentrations in urban settings (Abusalem et al., 2019). In Seoul, a spatiotemporal deep 
learning model was developed to predict citywide air pollution, incorporating traffic volume 
and average driving speed data, demonstrating improved forecasting accuracy (Le et al., 
2019). VOC emissions from various types of vehicles were assessed using a Portable Emission 
Measurement System (PEMS), revealing that intersection road conditions significantly impact 
tailpipe emissions (Wang et al., 2020). A hybrid CNN-LSTM framework, Deep-AIR, was 
proposed for air quality modeling in metropolitan cities, accounting for urban dynamics such as 
road density and building height (Han et al., 2021).

In Wenling City, the life cycle assessment of public bicycle systems revealed that carbon 
balance is achieved within seven months and long-term use significantly reduces emissions 
(Guangnian et al., 2022). Emission reductions through cooperative urban delivery systems 
were achieved via optimized routing strategies (Du et al., 2022). A spatiotemporal stratified 
approach was employed to investigate the interrelation between urban form, traffic volume, 
and air quality, revealing that highly aggregated roads and industrial areas are more associated 
with traffic volume in polluted zones (Tian & Yao, 2022). Recent studies developed real-time 
machine learning models to monitor vehicular emissions in urban areas (Wang et al., 2023). 
An integrated simulation platform was introduced to quantify traffic-induced environmental 
and health impacts, combining traffic modeling, emissions modeling, dispersion modeling, and 
human exposure assessment (Zhao et al., 2023). The impact of electric vehicle adoption on 
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reducing air pollutants was also evaluated (Chen et al., 2024). In Dublin, regression models 
utilizing Google Project Air View data and traffic data indicated that Gaussian Process 
Regression outperformed other models in predicting air quality, emphasizing the importance of 
considering spatial variability (Tafidis et al., 2024). Furthermore, big-data analytics have been 
used to optimize traffic flow and mitigate pollution in metropolitan areas (Kumar et al., 2025). 
The role of NO₂ as a reliable indicator of traffic-related air pollution was confirmed in a coastal 
city study, reinforcing its value for targeted mitigation policies (Hadine et al., 2025).

The emissions from vehicles at the surface would have the biggest impact on people in 
general. Furthermore, automobiles contribute substantially to the overall level of air pollution 
in several urban areas. The research lacks in analysing the impact of traffic volume and vehicle 
composition on air quality. The models which provide the relationship between the pollutants 
and traffic volume are necessary to observe the change in different pollutants with respect to 
increase in traffic volume. In this context, the present study attempts to measure and assess 
the concentration of various pollutants with respect to traffic volume observed at sections of 
multi-lane divided road mid-blocks. The study also focuses to develop models for predicting 
concentration of major air pollutants on multi-lane divided roadway mid-blocks under mixed 
traffic conditions.

MATERIALS AND METHODS

A detailed methodology is proposed to study the impact of traffic flow on air quality in 
urban areas in various phases. The first phase of the study involves a critical literature review 
to identify the objectives of the study. The second phase of the study deals with the selection 
of study areas such as urban road mid-block sections and signalized intersections in selected 
cities. The third phase of the study involves collection of data on sections of multilane divided 
road ways, traffic volume and vehicle composition data at urban road mid-blocks. The fourth 
phase of the study involves the detailed pollution data analysis, volume data analysis. In fifth 
phase of the study, development of models to predict the concentration of major pollutants on 
multi-lane divided urban road sections. A procedure followed to carry out the present study is 
presented in Fig 1.

The road mid-block sections with flat terrain and straight alignment are considered for the 
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current study. Field data is collected in three cities in India namely Warangal, Vijayawada and 
Tirupathi. Six different mid-block sections have been identified for data collection from each 
city chosen. The region or map of the cities chosen for the study is shown in Fig 2. 

The present study required to collect different types of data such as traffic volume and 
composition data at road mid-block sections and pollutant data at mid-blocks. The traffic 
volume (V) data was collected for eight hours in each mid-block section using video cameras. 
The classified traffic volume data was extracted from the video by playing the videos on 
wide screen display. Six major pollutants namely CO, CO2, HCHO, TVOC, PM2.5 and PM10 
are observed at road mid-block sections.The concentration of pollutants was measured using 
handheld equipment. The data obtained for all the pollutant concentrations at every 5 min and 
aggregated for every 1 hour to measure average and total concentration. The present study used 
different portable equipment such as CO meter, laser particle multi-functional detector and air 
quality detector.

Traffic data were collected via videography at mid-block sections and converted to PCUs 
using Indo-HCM (2017) values. Section XIV recorded the highest traffic volume (5586 PCU/
hr) between 7–8 PM, while Section IX had the lowest (121 PCU/hr) between 7–8 AM. Pollution 
data for six major pollutants were gathered every 5 minutes using handheld devices, with hourly 
aggregation. The highest pollution level (1180 ppm) aligned with peak traffic in Section XIV, 
whereas the lowest (563 ppm) occurred in Section XIII during low traffic. A strong correlation 
between traffic volume and pollution levels was observed.

RESULTS AND DISCUSSIONS

The relationship between different variables can be analyzed using various modelling 
techniques. The present study implemented three different modelling techniques namely Multiple 
Linear Regression (MLR), Support Vector Regression (SVR) and Artificial Neural Networks 
(ANN) to predict the concentration of different pollutants on road mid-block sections. The 
concentration of pollutants is taken as dependent variable and proportional share of different 
type of vehicles such as P2W, PCar, P3W, PLCV and PHV, traffic volume (V) and temperature (T) are 
considered as independent variables for all the models.

 
Fig 2. Region of the cities chosen for the study 

  

Fig. 2. Region of the cities chosen for the study
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Models were developed using MLR analysis on data from 12 road mid-block sections across 
Warangal, Tirupathi, and Vijayawada to predict concentrations of six pollutants (CO, CO₂, 
HCHO, TVOC, PM₂.₅, and PM₁₀). The models used pollutant concentrations as dependent 
variables and factors like vehicle proportions (P2W, PCar, P3W, PLCV, PHV), traffic volume, 
and temperature as independent variables, achieving an R² of about 0.6, with the percentage of 
3W, percentage of LCV, and traffic volume emerging as key influencers. The regression outputs 
obtained from MLR model are presented in Table 1. 

			                    �      (6.1)

				�     (6.2)                                           

		                         �  (6.3)

                                      �  (6.4)

7.38+166.32      					�        (6.5)                                                 

- 1.12                                         �   (6.6)

This regression output table presents the statistical relationship between pollutant 
concentrations and various traffic-related factors at urban mid-block sections. For carbon 
monoxide (CO), the model achieved an R² of 0.68, indicating a good fit, with the percentage 
of light commercial vehicles (PLCV) and overall traffic volume emerging as highly significant 
contributors to CO levels (p < 0.001). Carbon dioxide (CO₂) showed a slightly better fit (R² = 
0.70), with strong positive associations with the percentage of three-wheelers (P3W) and traffic 
volume, while temperature had a slight negative effect. Formaldehyde (HCHO) concentrations 
were moderately explained (R² = 0.61), where P3W and traffic volume had positive impacts, 
and temperature showed a significant negative influence. The model for total volatile organic 
compounds (TVOC) had the highest explanatory power (R² = 0.80), driven significantly by 
P3W, PLCV, and temperature (which had a negative effect). For particulate matter, PM₂.₅ (R² 
= 0.74) was influenced mainly by the percentage of heavy vehicles (PHV) and traffic volume, 
both showing strong positive effects, while PM₁₀ (R² = 0.66) was significantly affected by P3W, 
temperature (negative), and traffic volume. Across all pollutants, traffic volume consistently 
emerged as a key predictor, underlining its critical role in urban air quality deterioration.

The pollutant concentration models were validated using data from 6 mid-block sections, 
with observed and predicted values compared against a 45° reference line. Chi-square tests 
yielded p-values above 0.05, indicating no significant difference between observed and modeled 
values, as shown in the validation plots in Fig 3.

The validation plots presented in subplots (a) through (f) compare the observed and predicted 
pollutant concentrations for CO, CO₂, HCHO, TVOC, PM₂.₅, and PM₁₀, respectively, using 
Multiple Linear Regression (MLR) models developed in this study. These plots demonstrate 
how accurately the models replicate real-world pollution levels observed at urban mid-block 
sections. A strong alignment of points along the 45° reference line in subplots (a) and (b) indicates 
that the MLR model performs reliably in estimating CO and CO₂, which is further supported by 
R² values of 0.68 and 0.70, respectively (Table 2). Subplot (c), showing HCHO, and subplot (d), 
showing TVOC, also reflect acceptable model performance, with data clustering near the line 
and respective R² values of 0.61 and 0.80. These results are in line with studies such as Pandian 
et al. (2009) and Xia & Shao (2004), who also demonstrated strong pollutant-traffic volume 
correlations using statistical models.



Kanth Angatha and Sahitya Kurre1478

Table 1 Regression outputs of the MLR models developed at road mid-block sections 
 

Dependent 
variable 

Independent 
variables p-value t-stat value R2 Adjusted R2 

CO (ppm) Intercept 0.004 2.92 

0.68 0.67 PLCV 0.000 11.68 

Traffic volume 0.000 9.41 
CO2 (ppm) Intercept 0.000 8.10 

0.70 0.71 
P3W 0.000 9.52 

Temperature 0.020 -2.35 

Traffic volume 0.000 6.34 

HCHO (mg/m3) Intercept 0.001 2.15 

0.61 0.61 
P3W 0.000 6.00 

Temperature 0.003 -3.04 

Traffic volume 0.006 2.76 

TVOC (mg/m3) Intercept 0.041 1.98 

0.80 0.79 
P3W 0.000 3.58 

Temperature 0.000 
 -4.07 

PLCV 0.022 2.32 

PM2.5 (µg/m3) Intercept 0.000 6.11 

0.74 0.73 PHV 0.000 4.81 

Traffic volume 0.000 16.13 

PM10 (µg/m3) Intercept 0.033 2.16 

0.66 0.65 
P3W 0.000 7.21 

Temperature 0.005 -2.85 

Traffic volume 0.000 7.03 

 
  

Table 1. Regression outputs of the MLR models developed at road mid-block sections

Subplots (e) and (f), which validate PM₂.₅ and PM₁₀ predictions, show slightly more 
dispersion but still maintain a clear upward trend, with R² values of 0.74 and 0.66, respectively, 
suggesting that the model effectively captures the particulate pollution dynamics influenced by 
vehicle types and volumes. The p-values from the Chi-square tests are above 0.05 (e.g., 0.91 for 
CO₂), indicating no statistically significant difference between observed and predicted values, 
validating the models’ robustness. Similar modeling approaches and validation techniques were 
employed in previous works such as Goyal et al. (2005) and Tippichai et al. (2005), which 
also found traffic flow to be a critical determinant of urban air pollution levels. Overall, the 
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Fig 3. Validation plots for different pollutant concentrations 
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validation plots confirm that the MLR models developed in this study are reliable for predicting 
traffic-induced air pollutant concentrations at urban mid-block sections.

The Support Vector Regression (SVR) modeling approach provides a robust framework for 
regression tasks. SVM technique is efficient in handling high-dimensional data and non-linear 
relationships. The present study implemented SVR in R-software to predict the concentration 
of different pollutants on road mid-block sections. SVR modelling considers 70% of the data 
for training and 30% of the data for testing. The SVM type taken for the regression is eps-
regression. The SVM Kernel function used for the regression is radial. The confidence interval 
used for the regression is 95%. The libraries, functions and data assumptions used to develop 

Table 2 Regression outputs of the SVR models developed at road mid-block sections 
 

Dependent 
variable Independent variables Co-efficient p-value t-stat value R2 Adjusted R2 

CO (ppm) Intercept 1.75 0.002 3.12 

0.72 0.71 PLCV 143.9 0.000 11.33 

Traffic volume 0.001 0.000 9.49 

CO2 (ppm) Intercept 425.45 0.000 7.21 

0.75 0.75 
P3W 762.34 0.000 3.96 

Temperature -3.81 0.015 -2.22 

Traffic volume 0.06 0.000 8.19 

HCHO (mg/m3) Intercept 0.004 0.001 2.24 

0.65 0.66 
P3W 0.028 0.000 4.42 

Temperature -0.002 0.004 -2.89 

Traffic volume 0.0006 0.003 2.92 

TVOC (mg/m3) Intercept 0.001 0.041 2.01 

0.85 0.86 
P3W 0.42 0.021 2.92 

Temperature -0.003 0.042 
 -2.00 

PLCV 1.40 0.022 2.12 

PM2.5 (µg/m3) Intercept 5.42 0.000 5.37 

0.81 0.80 PHV 92.69 0.000 2.49 

Traffic volume 0.02 0.000 14.29 

PM10 (µg/m3) Intercept 24.97 0.033 2.60 

0.70 0.71 
P3W 135.49 0.000 4.45 

Temperature -0.58 0.005 -2.15 

Traffic volume 0.007 0.000 5.99 

 

Table 2. Regression outputs of the SVR models developed at road mid-block sections
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the model is given as a sample in Fig 4. 
This figure shows a screenshot of an RStudio script used for implementing Support Vector 

Regression (SVR) to predict pollutant concentrations (specifically CO in this case) based on 
traffic-related variables. The script first loads the dataset (d) and creates a data frame with 
three variables: the dependent variable y (CO concentration), and independent variables 
PLCV (percentage of light commercial vehicles) and TV (traffic volume). The dataset is then 
partitioned into training (70%) and testing (30%) sets using random sampling. A linear model 
is briefly created for comparison, but the main focus is on SVR, implemented using the e1071 
and caret libraries. The SVR model (svm()) is trained on the training set (train) and used to 
predict values on the test set (test), which are visualized by plotting the observed and predicted 
values using a red line for actual and a blue line for predicted results. Performance metrics such 
as Mean Absolute Error (MAE) and Coefficient of Determination (R²) are calculated using the 
caret package to assess model accuracy. This workflow is part of the model validation process 
described in the study to evaluate the effectiveness of SVR in forecasting traffic-induced 
pollution at mid-block road sections.

The proportional share of different type of vehicles such as P2W, PCar, P3W, PLCV and PHV, 
traffic volume (V) and temperature (T) are considered explanatory variables and concentration 
of pollutants as dependent variables for all the models. The statistical outputs of support vector 

 

 
 

Fig 4. Sample data input for SVR model developed for mid-block sections 

  

Fig. 4. Sample data input for SVR model developed for mid-block sections

 
Fig 5 SVR model predicted TVOC concentrations 

  

Fig. 5. SVR model predicted TVOC concentrations
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regression models developed in the study are given in Table 2. 
This table presents the results of the Support Vector Regression (SVR) models developed 

to predict the concentration of various air pollutants based on traffic and environmental factors 
at urban road mid-block sections. The models show strong predictive ability, with R² values 
ranging from 0.65 (HCHO) to 0.85 (TVOC), indicating a high degree of accuracy in capturing 
the variance in pollutant levels. For CO, the most influential predictors are the percentage 
of light commercial vehicles (PLCV) and traffic volume, both positively contributing to CO 
levels. In the case of CO₂, the model identifies a strong positive relationship with three-wheeler 
share (P3W) and traffic volume, while temperature shows a negative effect. Similarly, HCHO 
levels increase with P3W and traffic volume but decrease with rising temperatures. The TVOC 
model, which achieves the highest R² (0.85), shows significant influence from P3W, PLCV, 
and temperature, suggesting that both vehicle composition and environmental conditions play 
key roles. For PM₂.₅, the concentration is driven mainly by the percentage of heavy vehicles 
(PHV) and traffic volume, with an exceptionally strong association indicated by a t-value of 
14.29 for traffic volume. Finally, PM₁₀ levels are significantly affected by P3W, temperature 
(negatively), and traffic volume. Across all models, traffic volume consistently emerges as a 
dominant predictor, reinforcing its critical impact on urban air quality. The SVR models thus 
offer a robust framework for accurately forecasting pollution levels using real-world traffic 
data.

The SVM model plots display predicted pollutant concentrations with test samples on the 
X-axis and predicted values on the Y-axis, where each point is generated by the SVR model. A 
trend line illustrates that predictions closely follow the expected pattern, as exemplified by the 
TVOC plot in Fig 5.

This figure displays the Support Vector Regression (SVR) model validation plot for one of 
the pollutants—most likely TVOC (Total Volatile Organic Compounds)—based on test data. 
The red diamond points represent the actual observed values of the pollutant concentration 
(test$y), while the blue line shows the SVR-predicted values (predictedy) over the same data 
points indexed by x (the test sample index). Ideally, close alignment between the red points and 
the blue line indicates good predictive performance. In this plot, the SVR model captures the 
general trend of the pollutant variation, but with some fluctuations and deviations, especially at 
certain peak and trough points. This pattern suggests that while the model performs reasonably 
well in predicting pollutant concentrations, there are still some errors due to the complexity 
and variability of the underlying traffic-pollution dynamics. The model’s effectiveness would 

 

Fig 5 Neural network architecture for CO model  

  

Fig. 5. Neural network architecture for CO model
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(i) (ii) 

 
(iii) (iv) 

 
(v) (vi) 

Fig 6 Output of ANN models (i) CO, (ii) CO2, (iii) HCHO, (iv) TVOC, (v)PM2.5, (vi) PM10 
Fig. 6. Output of ANN models (i) CO, (ii) CO2, (iii) HCHO, (iv) TVOC, (v)PM2.5, (vi) PM10
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typically be supported by statistical metrics such as R² and MAE, calculated in the associated 
R script, confirming its suitability for urban air quality modeling at mid-block road sections.

The present study also used the ANN technique to predict concentration of pollutants based 
on proportional share of different type of vehicles. Multi-layered feed-forward ANN is used 
by considering concentration of pollutants as the output layer in this study, and proportional 
share of different type of vehicles such as P2W, PCar, P3W, PLCV and PHV, traffic volume (V) and 
temperature (T) as input layers. 

Different iterations were carried out by changing the number of hidden layers and neurons 
to obtain the optimal network structure. The network structure with less error between the 
measured and ANN modelled values is the optimal structure. The neural network structure (one 
input layer, one hidden layer with ten neurons and one output layer) obtained for CO model is 
shown as a sample in Fig 5. Similar neural network structures are obtained for all the pollutants. 
The output of ANN models is given in Fig 6.

The ANN models developed in present study represents the graphs between the observed 
pollutant values, and ANN predicted pollutant values. The horizontal axis values display the 
field observed values. The vertical axis values are the forecasted values produced by the neural 
network model. The R-value represents the relation between the observed and ANN predicted 
values. 

A comparison has been made between the developed models of MLR, SVM, and ANN to 
understand the accuracy of the prediction of concentration of pollutants corresponding to the 
traffic volume. The error between the measured and modelled values is quantified to examine 
different methods’ performance in predicting concentration of pollutants. The statistical estimates 
such as R2value and Mean Absolute Percentage Error (MAPE) are used for measuring accuracy 
and determining the error. The MAPE value is the error percentage between the observed and 
predicted values obtained for each model. The model with high R2value and low MAPE values 
gives the best-predicted values. The R2 values and MAPE values obtained for the models are 
shown in Fig 6 and 7 respectively.

The results of comparison indicate that high R2value and low MAPE values are obtained 
when the ANN method is used to predict concentration of pollutants on road mid-block sections 
compared to the other methods. It represents that the ANN method could better predict the 
concentration of pollutants values regarding the rather than MLR and SVR methods.

CONCLUSİONS

The findings of this study reveal a clear statistical relationship between pollutant concentrations 
and traffic volume at urban road mid-block sections. Through the application of Multiple 

 

Fig 6 Comparison of R2 values for different models 
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Linear Regression (MLR) analysis, models were developed to estimate the concentrations of 
key pollutants, including CO, CO₂, HCHO, TVOCs, PM₂.₅, and PM₁₀, with traffic volume and 
vehicle percentages as explanatory variables. Validation using Chi-square tests demonstrated 
that the predicted and observed values were highly consistent, confirming the models’ reliability.

The analysis showed significant diurnal variations in pollutant concentrations, particularly 
between 6 PM and 9 PM, when traffic volumes ranged from 2500 to 4000 PCU/hr. During 
this period, pollutants such as CO, HCHO, TVOCs, and particulate matter (PM) exhibited 
substantial increases, whereas CO₂ concentrations remained largely stable. The total pollution 
concentration at mid-block road sections was found to increase by approximately 50% from 
morning to evening, correlating with a 73% rise in traffic volume. The highest pollutant 
concentration, recorded at 1180 ppm during the peak hour (7 PM to 8 PM), coincided with a 
traffic flow of 4000 PCU/h.

Furthermore, the study demonstrated that Artificial Neural Networks (ANN) outperformed 
both MLR and Support Vector Regression (SVR) models in predicting pollutant concentrations, 
as evidenced by superior R² values. These results underscore the critical role of increasing traffic 
volume in deteriorating air quality, with further traffic growth posing significant environmental 
risks.

This study provides valuable empirical insights into the intensity and dynamics of pollutant 
emissions from road traffic. It highlights the need for urban transportation planners and 
policymakers to address rising traffic volumes, as unchecked growth may lead to increasingly 
severe air quality degradation. The models developed offer a practical tool for forecasting 
pollution levels, enabling more informed decision-making to mitigate traffic-induced 
environmental impacts.

The results of this study, while derived from a specific urban context, have broad applicability 
to other cities experiencing similar traffic growth and air quality challenges. The modeling 
approaches using MLR, SVR, and ANN can be adapted to different urban environments with 
varying traffic compositions and infrastructure characteristics, offering a scalable method for 
estimating pollutant concentrations based on traffic patterns. The clear correlation between traffic 
volume and pollutant levels underscores a universal trend in urban areas, making the findings 
relevant for transportation planners and environmental regulators globally. These models can 
serve as predictive tools for assessing the environmental impact of proposed traffic management 
strategies, infrastructure developments, or policy interventions, thereby supporting data-driven 
decisions for sustainable urban mobility and improved public health outcomes.

Based on the findings of this study, several practical recommendations are proposed to 
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mitigate traffic-related air pollution at urban road mid-block sections. Authorities should 
prioritize the deployment of real-time air quality monitoring systems integrated with Artificial 
Neural Network (ANN) models, which demonstrated superior predictive accuracy in this study. 
Traffic management strategies such as dynamic signal timing, vehicle restrictions, and staggered 
work hours should be implemented during evening peak periods (6 PM to 9 PM), when pollution 
levels were observed to rise by approximately 50%. Policymakers are encouraged to regulate 
the movement of high-emission vehicle types, particularly three-wheelers and light commercial 
vehicles, in sensitive zones. Promoting the use of public transport, non-motorized mobility, 
and electric vehicles can further reduce pollutant concentrations. Lastly, urban planners should 
incorporate emission modeling tools into infrastructure design and land-use policies, ensuring 
that mid-block sections are regularly assessed and improved for environmental resilience.

ABBREVATIONS

CO (Carbon Monoxide), CO2 (Carbon Dioxide), HCHO (Formaldehyde), TVOCS (Total 
Volatile Compounds), NOₓ (Nitrogen Oxides), NO (nitrogen Oxide), NO2 (Nitorgen Dioxide), 
VOCs (volatile Organic Compounds), HCs (Hydro Carbons), HC (Hydro Carbon), CAL3QHC 
(Dıspersıon model of USA), CALINE4 (California Line Source 4 Model), COPERT III (EU 
standard vehicle emissions calculator), PCA (Principal Component Analysis), PEMS (Portable 
Emission Monitoring System), CNN-LSTM (Convalutional Neural Network – Long Short 
Term Memory Networks), V (Traffic Volume), PCUs (passenger Car Units), MLR (Multiple 
Linear Regression), SVR (Support Vector Regression), ANN (Artificial Neural Networks), P2W 
(Proportion of two wheeleres), Pcar (Proportion of cars), P3W (Proportion of three wheelers), 
PLCV (Proportion of Light Commercial vehicles), PHV (Proportion of Heavy vehicles), T 
(Temperature), LCV (Light Commerical Vehicles), PM (particluate Matter), MAPE (Mean 
Absolute Percentage error), R2 (Regression value), SVM (Support Vector Machine), PM2.5 
(Particulate Matter 2.5) and PM10 (Particulate Matter 10) and IITLS (Indian Institute of 
Technology Line Source Model). 
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