Aljubiri, S. M., Younes, A. A. O., Alosaimi, E. H., Abdel Daiem, M. M., Abdel-Salam, E. T., & El-Shwiniy, W. H. (2024). Recycling of Sewage Sludge: Synthesis and Application of Sludge-Based Activated Carbon in the Efficient Removal of Cadmium (II) and Lead (II) from Wastewater. International Journal of Molecular Sciences, 25(18), 9866. https://doi.org/10.3390/ijms25189866
Almahbashi, N. M. Y., Kutty, S. R. M., Ayoub, M., Noor, A., Salihi, I. U., Al-Nini, A., Jagaba, A. H., Aldhawi, B. N. S., & Ghaleb, A. A. S. (2021). Optimization of preparation conditions of sewage sludge based activated carbon. Ain Shams Engineering Journal, 12(2), 1175–1182. https://doi.org/10.1016/j.asej.2020.07.026
AlDawery, S., Al-Sawai, M., Muzami, G., Annamareddy, S., Al Dawari, M., Harharah, R., Harharah, H., & Amari, A. (2023). Treatment of produced water using prepared activated carbon-based sewage sludge. Separations, 10(10), 519.
Bao, D., Li, Z., Liu, X., Wan, C., Zhang, R., & Lee, D. J. (2020). Biochar derived from pyrolysis of oily sludge waste: Structural characteristics and electrochemical properties. Journal of Environmental Management, 268, 110734. https://doi.org/10.1016/j.jenvman.2020.110734
Bian, Y., Yuan, Q., Zhu, G., Ren, B., Hursthouse, A., & Zhang, P. (2018). Recycling of waste sludge: Preparation and application of sludge-based activated carbon. International Journal of Polymer Science, 2018, 1–17. https://doi.org/10.1155/2018/8320609
Björklund, K., & Li, L. Y. (2017). Adsorption of organic stormwater pollutants onto activated carbon from sewage sludge. Journal of Environmental Management, 197, 490–497. https://doi.org/10.1016/j.jenvman.2017.04.011
Blachnio, M., Derylo-Marczewska, A., Charmas, B., Zienkiewicz-Strzalka, M., Bogatyrov, V., & Galaburda, M. (2020). Activated carbon from agricultural wastes for adsorption of organic pollutants. Molecules, 25(21), 5105. https://doi.org/10.3390/molecules25215105
Boualem, T., Debab, A., Martínez de Yuso, A., & Izquierdo, M. T. (2014). Activated carbons obtained from sewage sludge by chemical activation: Gas-phase environmental applications. Journal of Environmental Management, 140, 145–151. https://doi.org/10.1016/j.jenvman.2014.03.016
Cao, J., Jiang, Y., Tan, X., Li, L., Cao, S., Dou, J., Chen, R., Hu, X., Qiu, Z., Li, M., Chen, Z., & Zhu, H. (2024). Sludge-based biochar preparation: Pyrolysis and co-pyrolysis methods, improvements, and environmental applications. Fuel, 373, 132265. https://doi.org/10.1016/j.fuel.2024.132265
Fachini, J., & Figueiredo, C. C. (2022). Pyrolysis of sewage sludge: Physical, chemical, morphological and mineralogical transformations. Brazilian Archives of Biology and Technology, 65. https://doi.org/10.1590/1678-4324-2022210592
Gan, Y. X. (2021). Activated carbon from biomass sustainable sources. C, 7(2), 39. https://doi.org/10.3390/c7020039
Kumar, D. P., Ramesh, D., Subramanian, P., Karthikeyan, S., & Surendrakumar, A. (2022). Activated carbon production from coconut leaflets through chemical activation: Process optimization using Taguchi approach. Bioresource Technology Reports, 19, 101155. https://doi.org/10.1016/j.biteb.2022.101155
Liu, Y., Zhou, S., Liu, R., Chen, M., Xu, J., Liao, M., Tu, W., & Tang, P. (2022). Utilization of waste sludge: Activation/modification methods and adsorption applications of sludge-based activated carbon. Journal of Water Process Engineering, 49, 103111. https://doi.org/10.1016/j.jwpe.2022.103111
Montoya-Bautista, C. V., Mohamed, B. A., & Li, L. Y. (2022). Sludge-based activated carbon from two municipal sewage sludge precursors for improved secondary wastewater-treatment discharge-effluent. Journal of Environmental Chemical Engineering, 10(6), 108704. https://doi.org/10.1016/j.jece.2022.108704
Raheem, A., Sikarwar, V. S., He, J., Dastyar, W., Dionysiou, D. D., Wang, W., & Zhao, M. (2018). Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: A review. Chemical Engineering Journal, 337, 616–641. https://doi.org/10.1016/j.cej.2017.12.149
Reddy, S. S. (2006). The removal of composite reactive dye from dyeing unit effluent using sewage sludge-derived activated carbon. Turkish Journal of Engineering and Environmental Sciences, 30(6), 367–373.
Shi, E., Wang, X., Zhang, M., Wang, X., Gao, J., & Zheng, Y. (2021). Enhancing carbon utilization and adsorption performance of sludge derived activated carbon through molten salt synthesis method. Research Square. https://doi.org/10.21203/rs.3.rs-1084525/v1
Tian, Y., Li, J., McGill, W. B., & Whitcombe, T. W. (2020). Impact of pyrolysis temperature and activation on oily sludge-derived char for Pb(II) and Cd(II) removal from aqueous solution. Environmental Science and Pollution Research, 28(5), 5532–5547. https://doi.org/10.1007/s11356-020-10892-z
Wang, L., Li, M., Hao, M., Liu, G., Xu, S., Chen, J., Ren, X., & Levendis, Y. A. (2021). Effects of activation conditions on the properties of sludge-based activated coke. ACS Omega, 6(34), 22020–22032. https://doi.org/10.1021/acsomega.1c02600
Yin, Q., Liu, M., & Ren, H. (2019). Biochar produced from the co-pyrolysis of sewage sludge and walnut shell for ammonium and phosphate adsorption from water. Journal of Environmental Management, 249, 109410. https://doi.org/10.1016/j.jenvman.2019.109410
Zhang, Y., Ma, Q., Chen, Z., Shi, Y., Chen, S., & Zhang, Y. (2023). Enhanced adsorption of diclofenac onto activated carbon derived from PET plastic by one-step pyrolysis with KOH. Environmental Science and Pollution Research, 30(53), 113790–113803. https://doi.org/10.1007/s11356-023-30376-0
Zhao, L., Sun, Z. F., Pan, X. W., Tan, J. Y., Yang, S. S., Wu, J. T., Chen, C., Yuan, Y., & Ren, N. Q. (2023). Sewage sludge-derived biochar for environmental improvement: Advances, challenges, and solutions. Water Research X, 18, 100167. https://doi.org/10.1016/j.wroa.2023.100167
Zhao, Q., & Zhang, Z. (2024). Study on the characteristics of biochar from municipal sludge based on pyrolysis temperature. SSRN. https://doi.org/10.2139/ssrn.4730163