Magnetic Field Induced Changes in Surface Tension in Pure Water and Polystyrene Micro-Nanoparticle Dispersions

Document Type : Original Research Paper

Authors

1 Graduate the Institute for Urban Water Management, TU Dresden, 01062, Dresden, Germany

2 Graduate the Institute of Structural Analysis, TU Dresden, 01187, Dresden, Germany

10.22059/poll.2025.388248.2731

Abstract

The escalating presence of microplastics (MPs) in the aquatic, terrestrial, and atmospheric ecosystems has raised significant environmental concerns, driving the urgent need for the development of effective separation techniques. This study examines the fundamental mechanisms of a novel method for separating microplastics using magnetic force and investigates its effects on dynamic surface tension. The surface tension behavior of degassed DI water and water containing polystyrene (PS) micro-nanoparticles (MNPs) was studied under the influence of a relatively weak magnetic field. The results confirmed notable changes in the dynamic surface tension of both systems. In degassed water, the presence of a magnetic field induced fluctuations and increased surface tension. Conversely, in the PS-water system, the magnetic field led to a significant reduction in surface tension at the air interface. Further experiments using a magnetometer to analyze PS particles in the degassed DI water provided insights into the behavior of PS particles in aqueous environments. This study offers understanding of the fundamental mechanisms that govern dynamic surface tension and the interaction between PS-MNPs and magnetic forces. The findings have implications for understanding the fundamental physics of separation technologies, aimed at mitigating the environmental impact of microplastics.

Keywords

Main Subjects


An, X., Wang, Y., Adnan, M., Li, W. & Zhang, Y. (2024). Natural factors of microplastics distribution and migration in water: A review. Water, 16(11), 1595. 
Berry, J. D., Neeson, M. J., Dagastine, R. R., Chan, D. Y., & Tabor, R. F. (2015). Measurement of surface and interfacial tension using pendant drop tensiometry. Journal of Colloid and Interface Science, 454, 226–237.
Cai, R., Yang, H., He, J., & Zhu, W. (2009). The effects of magnetic fields on water molecular hydrogen bonds. Journal of Molecular Structure, 938(1–3), 15–19.
Chia, R. W., Lee, J. Y., Kim, H., & Jang, J. (2021). Microplastic pollution in soil and groundwater: A review. Environmental Chemistry Letters, 19(6), 4211–4224.
Coey, J. M. (2010). Magnetism and magnetic materials. Cambridge University Press.
Cullity, B. D., & Graham, C. D. (2011). Introduction to magnetic materials. John Wiley & Sons.
de Souza Machado, A. A., Kloas, W., Zarfl, C., Hempel, S., & Rillig, M. C. (2018). Microplastics as an emerging threat to terrestrial ecosystems. Global Change Biology, 24(4), 1405–1416.
Delahaije, R. J., Sagis, L. M., & Yang, J. (2022). Impact of particle sedimentation in pendant drop tensiometry. Langmuir, 38(33), 10183–10191.
Deswati, D., Yusuf, Y., Putra, Z. A., & Putra, A. (2025). Abundance and characteristics of microplastics in surface water of Lake Singkarak in Tanah Datar, West Sumatra, Indonesia. Pollution, 11(2), 464–476.
Esmaeilnezhad, E., Choi, H. J., Schaffie, M., Gholizadeh, M., & Ranjbar, M. (2017). Characteristics and applications of magnetized water as a green technology. Journal of Cleaner Production, 161, 908–921.
Fiorillo, F. (2010). Measurements of magnetic materials. Metrologia, 47(2), S114.
Fujimura, Y., & Iino, M. (2009). Magnetic field increases the surface tension of water. Journal of Physics: Conference Series, 156(1), 012028.
Gouin, T., Ellis-Hutchings, R., Thornton Hampton, L. M., Lemieux, C. L., & Wright, S. L. (2022). Screening and prioritization of nano- and microplastic particle toxicity studies for evaluating human health risks: Development and application of a toxicity study assessment tool. Microplastics and Nanoplastics, 2(1), 2.
Hayakawa, M., Vialetto, J., Anyfantakis, M., Takinoue, M., Rudiuk, S., Morel, M., & Baigl, D. (2019). Effect of moderate magnetic fields on the surface tension of aqueous liquids: A reliable assessment. RSC Advances, 9(18), 10030–10033.
Hildebrandt, L., Voigt, N., Zimmermann, T., Reese, A., & Proefrock, D. (2019). Evaluation of continuous flow centrifugation as an alternative technique to sample microplastic from water bodies. Marine Environmental Research, 151, 104768.
Jin, X., Zhao, Y., Richardson, A., Moore, L., Williams, P. S., Zborowski, M., & Chalmers, J. J. (2008). Differences in magnetically induced motion of diamagnetic, paramagnetic, and superparamagnetic microparticles detected by cell tracking velocimetry. Analyst, 133(12), 1767–1775.
Kamani, H., Ghayebzadeh, M., & Ganji, F. (2024). Characteristics of microplastics in the sludge of wastewater treatment plants. Pollution, 10(2), 653–663.
Karbowiak, T., Debeaufort, F., & Voilley, A. (2006). Importance of surface tension characterization for food, pharmaceutical and packaging products: A review. Critical Reviews in Food Science and Nutrition, 46(5), 391–407.
Kiran, B. R., Kopperi, H., & Venkata Mohan, S. (2022). Micro/nano-plastics occurrence, identification, risk analysis and mitigation: Challenges and perspectives. Reviews in Environmental Science and Bio/Technology, 21(1), 169–203.
Koelmans, A. A., Redondo-Hasselerharm, P. E., Nor, N. H. M., de Ruijter, V. N., Mintenig, S. M., & Kooi, M. (2022). Risk assessment of microplastic particles. Nature Reviews Materials, 7(2), 138–152.
Liu, J., & Cao, Y. (2021). Experimental study on the surface tension of magnetized water. International Communications in Heat and Mass Transfer, 121, 105091.
Maliwan, T., & Hu, J. (2025). Release of microplastics from polymeric ultrafiltration membrane system for drinking water treatment under different operating conditions. Water Research, 274, 123047.
Nikpay, M., & Toorchi Roodsari, S. (2024). Crafting a scientific framework to mitigate microplastic impact on ecosystems. Microplastics, 3(1), 165–183.
Nikpay, M. (2023). Method and device for separating plastic particles with a magnetic filter. Patent no. DE102022001154A1. Germany.
Osman, A. I., Hosny, M., Eltaweil, A. S., Omar, S., Elgarahy, A. M., Farghali, M., Yap, P. S., Wu, Y. S., Nagandran, S., Batumalaie, K., & Gopinath, S. C. (2023). Microplastic sources, formation, toxicity and remediation: A review. Environmental Chemistry Letters, 21(4), 2129–2169.
Pang, X. F., & Deng, B. (2008). The changes of macroscopic features and microscopic structures of water under the influence of a magnetic field. Physica B: Condensed Matter, 403(19–20), 3571–3577.
Portuguez, E., Alzina, A., Michaud, P., Oudjedi, M., & Smith, A. (2017). Evolution of a water pendant droplet: Effect of temperature and relative humidity. Natural Science, 9(1), 1–20.
Rashed, A. H., Yesilay, G., Hazeem, L., Rashdan, S., AlMealla, R., Kilinc, Z., Ali, F., Abdulrasool, F., & Kamel, A. H. (2023). Micro- and nano-plastics contaminants in the environment: Sources, fate, toxicity, detection, remediation, and sustainable perspectives. Water, 15(20), 3535.
Reed, D. M., Fortenberry, A., Wolfe, E. A., Stanhope, R. A., Daniel, C. I., Hern, C. M., Smith, A. E., & Scovazzo, P. (2020). Interfacial vs bulk phenomena effects on the surface tensions of aqueous magnetic surfactants in uniform magnetic fields. Langmuir, 36(34), 10074–10081.
Rezania, S., Park, J., Din, M. F. M., Taib, S. M., Talaiekhozani, A., Yadav, K. K., & Kamyab, H. (2018). Microplastics pollution in different aquatic environments and biota: A review of recent studies. Marine Pollution Bulletin, 133, 191–208.
Scatena, L. F., Brown, M. G., & Richmond, G. L. (2001). Water at hydrophobic surfaces: Weak hydrogen bonding and strong orientation effects. Science, 292(5518), 908–912.
Schenck, J. F. (1996). The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Medical Physics, 23(6), 815–850.
Senathirajah, K., Kandaiah, R., Panneerselvan, L., Sathish, C. I., & Palanisami, T. (2023). Fate and transformation of microplastics due to electrocoagulation treatment: Impacts of polymer type and shape. Environmental Pollution, 334, 122159.
Soncini, R., & Klein, W. (2023). Surface tension in biological systems: A common problem with a variety of solutions. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 111475.
Stokes, G. G. (1851). On the effect of the internal friction of fluids on the motion of pendulums. Transactions of the Cambridge Philosophical Society, 9, 8–106.
Thompson, R. C., Courtene-Jones, W., Boucher, J., Pahl, S., Raubenheimer, K., & Koelmans, A. A. (2024). Twenty years of microplastics pollution research—what have we learned? Science, eadl2746.
Toledo, E. J., Ramalho, T. C., & Magriotis, Z. M. (2008). Influence of magnetic field on physical–chemical properties of the liquid water: Insights from experimental and theoretical models. Journal of Molecular Structure, 888(1–3), 409–415.
Vohl, S., Kristl, M., & Stergar, J. (2024). Harnessing magnetic nanoparticles for the effective removal of micro-and nanoplastics: A critical review. Nanomaterials, 14(14), 1179.
Wang, Y., Wei, H., & Li, Z. (2018). Effect of magnetic field on the physical properties of water. Results in Physics, 8, 262–267.
Yu, S., Shen, M., Li, S., Fu, Y., Zhang, D., Liu, H., & Liu, J. (2019). Aggregation kinetics of different surface-modified polystyrene nanoparticles in monovalent and divalent electrolytes. Environmental Pollution, 255, 113302.
Zhao, P., Xie, J., Gu, F., Sharmin, N., Hall, P., & Fu, J. (2018). Separation of mixed waste plastics via magnetic levitation. Waste Management, 76, 46–54.