Extraction of Naphthalene using Methanol in Batch and Dynamic Mode, Optimization Applying Response Surface Methodology

Document Type : Original Research Paper

Authors

1 Laboratory LOMOP, Department of Chemistry, Badji Mokhtar-Annaba University, Algeria

2 National Higher School of Technology and Engineering, Laboratory L3M, 23005, Annaba, Algeria

3 Laboratory LOMOP, Department of Process Engineering, Badji Mokhtar-Annaba University, Algeria

10.22059/poll.2025.389000.2756

Abstract

A laboratory study on liquid-liquid extraction (LLE) system was carried out in batch and dynamic modes to extract naphthalene from fuel-oil, using methanol as extractant. 
This study investigates the optimization of naphthalene extraction using methanol in both batch and dynamic LLE modes.
In batch mode, a Central Composite Design (CCD) was applied to optimize extraction parameters: extraction ratio (R), contact time (t), temperature (T), and stirring speed (SS). In dynamic mode, a Box-Behnken Design (BBD) was used to evaluate the influence of feed input, extraction ratio, and successive extractions.
Batch extraction yielded an optimum naphthalene removal of 80.62% at R = 1.5, t = 5 min, 
T = 5°C, and SS = 100 rpm. Successive extractions led to complete removal. Dynamic extraction achieved total elimination at 30 mL/h, R = 1.5, and three successive extractions.
This study demonstrates the feasibility of using methanol for efficient naphthalene extraction. Future research should focus on solvent regeneration and industrial-scale applications.

Keywords

Main Subjects


Anbia, M., & Moradi, S. E. (2009). Removal of naphthalene from petrochemical wastewater streams using carbon nanoporous adsorbent. Applied Surface Science, 255(9), 5041–5047. https://doi.org/10.1016/j.apsusc.2008.12.065
Abdelzaher, M. A., & Awad, M. M. (2022). Sustainable development goals for the circular economy and the water-food nexus: Full implementation of new drip irrigation technologies in Upper Egypt. Sustainability, 14(21), 13883. https://doi.org/10.3390/su142113883
Bendebane, F., Bouziane, L., & Ismail, F. (2010). Extraction of naphthalene: Optimization and application to an industrial rejected fuel oil. Journal of Industrial and Engineering Chemistry, 16(2), 314–320. https://doi.org/10.1016/j.jiec.2010.01.033
Bendebane, F., Bouziane, L., & Ismail, F. (2013). Liquid-liquid extraction of naphthalene: Application of a mixture design and optimization. Energy Procedia, 36, 1241–1248. https://doi.org/10.1016/j.egypro.2013.07.140
Bendebane, F., Ismail, F., & Bouziane, L. (2014). Extraction of naphthalene from an organic phase with the mixture DMSO-methanol-phenol in batch mode: Application of a composite centered design (CCD). Energy Procedia, 50, 642–651. https://doi.org/10.1016/j.egypro.2014.06.079
Bendebane, F., Mohammedi, D., Boukhari, A., & Ismail, F. (2016a). Modeling and optimization of naphthalene extraction from fuel oil: Application of a mixture design. Chem Xpress, 9(2), 148–155.
Bendebane, F., Halaimia, F., Bahloul, L., Bouziane, L., & Ismail, F. (2016b). [Title missing]. Pollution Research, 35(4), 23–29.
Biery, J. C., & Boylan, D. R. (1963). Dynamic simulation of liquid-liquid extraction column. Industrial & Engineering Chemistry Fundamentals, 2(1), 44–50. https://doi.org/10.1021/i160005a009
Box, G. E. P., & Wilson, K. B. J. (1951). [Title missing]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 13, 1–45.
Box, G. E. P., & Hunter, J. S. (1957). [Title missing]. Annals of Mathematical Statistics, 28(1), 195–241.
Box, G. E. P., & Draper, N. R. (2007). Response surfaces, mixtures, and ridge analyses (Vol. 649). John Wiley & Sons.
Box, G. E. P., Hunter, W., & Hunter, J. R. (1978). [Titre manquant]. Journal of the Royal Statistical Society: Series A (General), 141(2). (À compléter si tu as le titre)
Coursol, J. (1980). Technique statistique des modèles linéaires. CMPA, Nice-Paris.
Collin, G., Höke, H., & Greim, H. (2000). Naphthalene and hydronaphthalenes. In Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH. https://doi.org/10.1002/14356007.a17_001.pub2
Dagnelie, P. (2000). La planification des expériences : choix des traitements et dispositif expérimental. Journal de la Société Française de Statistique, 141(1–2), 5–29.
Daudin, J. J., & Duby, C. (2002). Techniques mathématiques pour l’industrie agroalimentaire. (Maison d’édition à préciser si possible)
Draper, N. R., Lin, D. K. J., Ghosh, S., & Rao, C. R. (1996). Response surface designs (Vol. 13). Elsevier Science.
Droesbeke, J.-J., Saporta, G., & Fine, J. (1997). Plans d’expériences : applications à l’entreprise. Éditions Technip.
EPA. (2022). Naphthalene: Health and environmental effects. United States Environmental Protection Agency. (Lien à ajouter si disponible)
Fazlali, A., Ghalehkhondabi, V., & Asadi, Z. (2021). Optimization of naphthalene extraction from cracked fuel oil (CFO) in Shazand petrochemical complex. Petroleum Research, 31(116), 11–13. https://doi.org/10.22078/pr.2020.4127.2873
Goupy, J. (1999). Plan d’expériences pour surface de réponse. Dunod. ISBN 2-10-005765-0.
Goupy, J. (1997). Plans d’expériences (Vol. P230). Dunod.
Hsieh, K.-T., Liu, P.-H., & Urban, P. L. (2015). Automated on-line liquid–liquid extraction system for temporal mass spectrometric analysis of dynamic samples. Analytical Chimica Acta, 894, 35–43. https://doi.org/10.1016/j.aca.2015.08.045
Al Kaisy, G. M. J., Mutalib, M. I. A., Bustam, M. A., & Razali, R. B. (2014). Optimization of naphthalene extraction from its mixture with base oil and dibenzothiophene by BMIMDMP ionic liquid using response surface methodology (RSM). Applied Mechanics and Materials, 625, 50–56. https://doi.org/10.4028/www.scientific.net/AMM.625.50
Kula, M.-R., Kroner, K. H., & Hustedt, H. (1982). Purification of enzymes by liquid-liquid extraction. In Reaction Engineering (pp. 73–118). Springer. https://doi.org/10.1007/3-540-11699-0_11
Koutsoukos, S., Papadopoulou, M., Nikolaou, A., & Kalogianni, E. (2023). Application of deep eutectic solvents for the extraction of polycyclic aromatic hydrocarbons (PAHs). Applied Sciences, 13(6), 3502. https://doi.org/10.3390/app13063502
Lakade, S. S., Borrull, F., Furton, K. G., Kabir, A., Marcé, R. M., & Fontanals, N. J. (2016). Dynamic fabric phase sorptive extraction for a group of pharmaceuticals and personal care products from environmental water. Journal of Chromatography A, 1456, 19–26. https://doi.org/10.1016/j.chroma.2016.05.097
Lewis, G. A., Mathieu, D., & Phan-Tan-Luu, R. (1998). Pharmaceutical experimental design. CRC Press.
Matar, S., & Hatch, L. F. (2001). Chemistry of petrochemical processes (2nd ed., Chapter 2). Gulf Professional Publishing.
Meziane, S. (2013). Optimization of oil extraction from olive pomace using response surface methodology. Food Science and Technology International, 19(4), 315–322. https://doi.org/10.1177/1082013212452476
Rieger, R., Weiss, C., Wigley, G., Bart, H.-J., & Marr, R. (1996). Investigating the process of liquid-liquid extraction by means of computational fluid dynamics. Computers & Chemical Engineering, 20(12), 1467–1475. https://doi.org/10.1016/0098-1354(95)00232-4
Tinsson, W. (2010). Plans d’expérience : constructions et analyses statistiques (Vol. 67). Springer Science & Business Media.
Aziz, Z. S., Jazza, S. H., Dageem, H. N., Banoon, S. R., Balboul, B. A., & Abdelzaher, M. A. (2024). Bacterial biodegradation of oil-contaminated soil for pollutant abatement contributing to achieve sustainable development goals: A comprehensive review. Results in Engineering, 22, 102083. https://doi.org/10.1016/j.rineng.2024.102083