Hematological responses of Goldfish (*Carassiusauratus*) to different acute concentrations of Silver Sulfate as a toxicant

Abarghoei, S.¹, Hedayati, S.A.¹, GhafariFarsani, H.², HasanGerami, M.^{3*}

¹ Department of Fisheries, Gorgan University of Agricultural Sciences and Natural Resources, Goran, Iran

² Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran

³ Young Researchers and Elite Club, Shiraz Branch, Islamic Azad University, Shiraz, Iran

Received: 4 Nov. 2014

Accepted: 3 Mar. 2015

ABSTRACT: This study aimed to evaluate the efficacy of silver sulfate (AgSO₄) as a toxicant in goldfish (Carassiusauratus). One hundred and forty-seven live specimens of C. auratus were obtained and exposed to 1, 10, 100, 500, 1000 and 2000 ppm of AgSO₄ for 96 hours. There was one control group (no AgSO₄) and three replicates. The physicochemical properties of water and the following parameters were constant: pH: 7.56 \pm 0.45 (TS1); temperature: 19 \pm 1°C; hardness: 293 \pm 2.35 ppm and dissolved oxygen: 8.80 ± 0.06 mg L⁻¹ (DO-5510). LC₁, LC₁₀, LC₃₀, LC₅₀, LC₇₀, LC₉₀ and LC₉₉ were calculated in 24, 48, 72 and 96 hours. For assessing the impact of AgSO₄ on physiological responses of goldfish hematological indices, blood glucose and cortisol levels were measured. Results showed that LC_{50} 96-h of AgSO₄ for goldfish was 687.81 ppm. In addition, the use of AgSO₄induces a significant decrease in MCHE after 48 hours, MCV and MCH after 96 hours and lymphocyte after 96 hours in contrast to the control group (P<0.05). Furthermore, increased lymphocyte was significant after 24 hours exposure (P<0.05). In addition, glucose increased significantly at P<0.05 with time increase24 hours after experiment but this (). In conclusion, the study showed that acute toxicity of AgSO₄induced hematological alterations in goldfish and offers a tool for the evaluation oftoxicity-derived alterations.

Keywords: Carassiusauratus, hematological parameters, silver sulfate, stress response, toxicity.

INTRODUCTION

Aquatic ecosystems are the largest natural environments constantly faced with threats of deterioration in genetic and biological diversity (Vinodhini and Narayanan, 2009; Shahbazi Naserabad et al., 2015). Silver (Ag^+) is one of the most toxic metals known to aquatic organisms and of concern in various aquatic ecosystems because of the severity of its contamination in the

water column, sediments and biota (Eisler, 1996).Silver is used as halide in the manufacture of photographic imaging materials, jewelry, coins, indelible inks, eating utensils; and used as silver salt in caustics. germicides, antiseptics, and astringents production (Klaassen et al., 1986). It is also a waste product from heavy metal mining and milling processes (Lima et al., 1982). Most of Ag in the environment is bound to particles. thiosulfate, organic colloids, dissolved

^{*}Corresponding Author E-mail: m.h.gerami@gmail.com

organic matter (DOM), sulfide, and chloride, with the latter two representing the major forms of Ag in oxic natural waters where fish live (Wood et al., 1999).In contrast, the proportion of uncomplexed ionic Ag (Ag^+) is normally a very small percentage of the total Ag amount in waters resources (Purcell and Peters, 1998; Shafer et al., 1998; Lytle, 1984).

Ecotoxicology is the study of the impact contaminants of environmental on ecosystems. Understanding the effect of toxicants on fish supports the larger ecotoxicological goal of comprehending the action of ecotoxicans on fish populations (Bols et al., 2001). It is important to examine the toxic effects of heavy metals on fish since they constitute an important link in the food chain and their contamination by heavy metals causes imbalances in the aquatic system (Ahmad, 2011, Khabbazi et al., 2014). Carassiusauratus (Goldfish) is a freshwater, benthopelagic fish of the Family Cyprinidae, Order Cypriniformes. It is an exotic and invasive fish inhabiting the Inland waters of Iran, with a wide distribution (Esmaeili et al., 2014). C. auratus is considered as the most popular and favorable aquarium fish in Iran and approximately 5 million goldfish are reproduced during the new year's holidays (Nowruz) (Coad and Abdoli, 1993). The toxicity of Ag+ to fishes relatively well documented. Many researchers have reported silver toxicity in various aquatic organisms (Birge and Zuidervee, 1995, Davies et al., 1978; Ratte, 1999; Shaw et al., 1998; Lee et al., 2005; Asharani et al., 2008; Fabrega, 2011), but data on acute toxicity and the effects of $AgSO_4$ on hematological parameters of C. auratus are scarce.

Silver is very reactive or catalytic and is able to pass through cell membranes in organisms. Furthermore, its interactions in biological systems are relatively unknown. Therefore, the aim of this study was to determine the potential toxicity of AgSO₄ in *C. auratus* and its impact on hematological parameters. These data can be useful in aquatic toxicity management and environmental safety.

MATERIALS AND METHODS

Ethics Statement

All experiments performed on fishes in this study complied with the standards of the Organization for Economic Cooperation and Development (OECD). All analyses were accomplished to minimize suffering. Fish were anaesthetized before blood sampling was carried out.

One hundred and forty-seven live specimens of C. auratusweighing56.33±12.05 g were used for this study. They were acclimatized randomly in a 400 L fiberglass aquarium for one week. Six aquariums were treated with 1, 10, 100, 500, 1000 and 2000 ppm of AgSO₄ with one control group (no AgSO₄). AgSO₄was purchased from Merck Company (Frankfurter, Germany).No feeding occurred during the period of the test (96 hours). There were no significant differences in water quality among the aquariums and the following were constant: pH: 7.56±0.45 (TS1); temperature: 19±1°C; hardness: 293±2.35 ppm and dissolved oxygen: 8.80 $\pm 0.06 \text{ mg L}^{-1}$ (DO-5510). 80% of water in the aquariums were changed every 12 h with redosing after each change and the photoperiod was adjusted to 12 h light and 12 h dark. Static acute toxicity test was performed following the guidelines of OECD standard method (OECD, 1989). Mortality rates were recorded after 24, 48, 72 and 92 hours and dead specimens were quickly removed from the aquarium. The nominal concentration of toxin causing mortality (LC1·LC10 · LC30 · LC50 (LC70 (LC90 and LC99) within 24, 48, 72 and 92 hours was recorded. LC50 values for 24, 48, 72 and 96 h exposures were computed and analyzed with probit analysis version 16.0 (Finney, 1971).

Fish were anaesthetized with 200 ppm eugenolin 5 L tanks and blood samples were collected 24, 48 and 96 hours after exposure. Hematological parameters were estimated according to routine clinical methods (Wintrobe, 1974). The acidhematin method of Sahli in hemometer was used to analyze hemoglobin percentage and Naeubaur's double hemocytometer to enumerate the erythrocytes (Mukherjee, 1988). Mean cell hemoglobin (MCH), mean corpuscular volume (MCV) and cell hemoglobin concentration mean (MCHC) were calculated according to Decie and Lewis (1991). One-way analysisof variance (ANOVA) wasused to analyze hematological parameters.

Cortisol and Glucosetests were carried out as described by in Shaluei et al. (2012). The blood samples were measured by placing in tubes and allowed to clot at 22-24°C for 30 min. Serum was removed from the clotted sample after centrifugation at 5,000 rpm for5 min and frozen at -80°C until analysis. Glucose was measured using a spectrophotometric method (WPAS2000-UV/VIS, Cambridge, UK) with reagents provided in standard analyses kits (Pars Azmon, Iran). Cortisol was determined with a commercial kit (ELISA, DRG Diagnostics, Mountainside, NJ, USA) (King et al., 2005; Teles et al., 2007; Caruso et al., 2010). ELISA kit was validated for use by linear response tests of the sample and cortisol overload (Weber et al., 2011).

All results are expressed as mean \pm SD. Statistical analyses were carried out using

SPSS 18.0. Normality of data was first estimated using a Kolmogorov–Smirnov's test and homogeneity of variance was assessed with Levene's test. Differences between means were determined using one-way ANOVA followed by Tukey's multiple range test at 5% probability level.

RESULTS

No mortality was observed during the acclimatization. Results showed that within 96 h, LC_{50} value in goldfish declined increasing (687.81 ppm) with toxin concentration and duration of exposure. The nominal concentration of toxin-causing mortality (LC1, LC10, LC30, LC50, LC70, LC90 and LC99) within 24, 48, 72 and 92 hours are presented in Tables 1 and 2. Hundred percent mortality of fish occurred 72 hours after exposure to 2000 ppm concentration of the contaminant. Effects of different concentrations of silver sulfate on hematological indices of goldfish are presented in Table 3.Values of MCHE after 48 hours, MCV and MCH after 96 hours and lymphocyte after 96 hours showed significant reduction in contrast with the control group (P<0.05).Furthermore, increase in lymphocyte was significant after 24 hours exposure (P<0.05). In addition, glucose increased with increasing time but this increase was significant at 24 hours after exposure (P<0.05) (Fig. 1). Figure 2 shows the minimum and maximum levels of lethal concentration of AgSO₄ for goldfish.

AgSO ₄ lethal		Mortality (No.)			
concentrations (ppm)	Number of samples	24 hours	48 hours	72 hours	96 hours
0	21	0	0	0	0
1	21	0	0	0	0
10	21	0	0	0	0
100	21	0	0	0	0
500	21	0	3	8	8
1000	21	0	5	11	17
2000	21	19	19	21	21

Table 1. Cumulative mortality of Goldfish (n=21, each concentration) exposed to acute AgSO₄

Abarghoei, S. et al.

Concentrating (ppm) (0.05 Significant level)								
LC	24 hours	48 hours	72 hours	96 hours				
LC_1	1360	75.06 (0-340.31)	0	28.77 (0-189.04)				
LC_{10}	1670	627.05 (376.15-822.63)	355.11 (0-585.50)	324.75 (157.08-440.13)				
LC_{30}	1890	102000 (8010-1231.12)	645.16 (396.06-958.90)	539.25 (421.71-649.19)				
LC ₅₀	2050	130000(1109.94-1558.21)	861.27 (630.62-1330.17)	687.81 (580.20-818.78)				
LC_{70}	2200	158000(1360.78-1912.30)	106.17 (810.52-1756.09)	836.37 (720.0-1007.5)				
LC_{90}	2430	1850 (1698.52-2447.99)	1360 (1033.64-2407.69)	1050 (903.5-1297.23)				
LC ₉₉	2740	2530 (2144.94-3206.82)	1780 (1317.43-3330.92)	1340 (1142.25-1712.13)				

Table 2. Lethal Concentrations (LC1-99) of $AgSO_4$ depending on time (24-96h) for Goldfish (mean \pm SE)

Table 3. Hematological parameters of goldfish under LC_{50} AgSO₄ concentration

Hematological parameters	0	24 hours	48 hours	96 hours
RBC (10^{6} mm^{3})	0.58±0.11	1.53±0.29	0.81±0.06	0.94±0.16
WBC (10^3 mm^3)	13100±2133.88	10100±1016.02	11400±960.06	12300±1284. 30
MCH (10 ⁻⁵ pg)	92.55±1.52 ^a	52.56±1.51 ^a	63.72±0.51 ^{ab}	61.61 ± 10.48^{b}
MCHC (g/dl)	33.71±1.25 ^a	32.39 ± 0.74^{ab}	30.71±1.06 ^b	32.55 ± 0.62^{ab}
$MCV (10^{-4} mm^3)$	269±22.61 ^a	271 ± 10.21^{a}	242 ± 4.29^{ab}	225±4.21 ^b
HB (g/dl)	$5.34{\pm}1.06$	7.74±0.5	6.39±0.92	$7.49{\pm}1.85$
HCT (%)	15.55 ± 1.04	18.02 ± 2.78	16.10 ± 2.28	17.32 ± 1.27
Lymphocyte (%)	90.33 ± 0.57^{bc}	95.33±1.15 ^a	92.66 ± 1.15^{ab}	$88.66 \pm 2.08^{\circ}$
Monocyte (%)	33 ± 0.57^{a}	0^{b}	$0.66 \pm 57^{\circ}$	$0.66 \pm 0.57^{\circ}$
Neutrophil (%)	9.33 ± 0.57^{ab}	$4.66 \pm 1.15^{\circ}$	6.66 ± 0.57^{bc}	10.66 ± 1.52^{a}

Each value is a means \pm standard error. Different superscript letters indicate significant (P < 0.05) difference between the groups.



Fig. 1. Levels of blood glucose and cortisol of Goldfish in different times exposed to LC_{50} AgSO₄ concentration (Different superscript letters indicate significant (P < 0.05) difference between the groups)

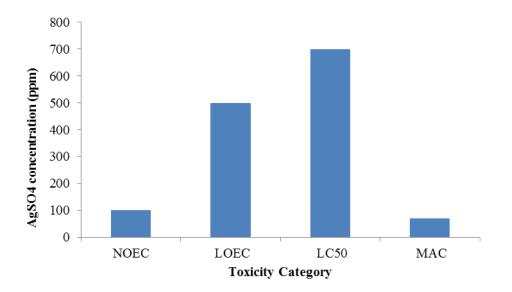


Fig. 2. AgSO₄ toxicity category for Goldfish

Exposure time is one of the effective factors in toxicity studies (Larkin and Tjeerdema, 2000). When fish are exposed to a constant concentration of toxin, fish tolerance diminishes over time and the toxin is more effective. However, while the toxin accumulated in fish tissue also increases its adverse effects on the body and thereby causes a decrease in LC₅₀values in 96h. Overall, LC_{50} for silver sulfate in goldfish showed a decreasing trend over 96 hours and in physicochemical conditions. Contrasting results are limited on the toxicity of silver sulfate in fishes. Davies et al. (1978) studied acute toxicity of silver the on Salmogairdneri. They stated that the mean 96-h LC₅₀ of silver in rainbow trout were 6.5 and 13.0 μ g 1⁻¹ in soft water (approximately 26 mg 1^{-1} hardness as CaCO₃) and hard water (350 mg l^{-1} hardness as CaCO₃), respectively. In addition, Birge and Zuiderveen (1995) reported LC₅₀ value for Oncorhynchusmykiss, *Ictaluruspunctatus* and Micropterussalmoidesas 0.01, 0.01 and 0.11 mg/L, respectively.

Zhao et al. (2011) reported that the calculated AgNO₃48-h LC₅₀was 2.51 μ g/L. Erickson et al. (1998)studied the acute toxicity of silver nitrate on *Pimephalespromelas* and *Daphnia magna*

in laboratory water (pH: 7.94; hardness: 48mg l⁻¹) and St. Louis River (pH: 8.02; hardness: 81mg l⁻¹). They stated that LC₅₀ of silver nitrate for *P. promelas* was 10.4 and 106µg Ag/L in laboratory and river conditions, respectively. In addition, these values were 0.58 and 35µg Ag/L for *D. magna*, respectively. However, various factors may influence bioassay techniques like differences in fish (e.g., species, weight, size) and other environmental factors viz. temperature, variations in pH of the water, total hardness of water and dissolved oxygen (Bat et al., 2000; Pandey et al., 2005).

recent with developing In years nanotechnology, researchers have reported the acute toxicity of nano silver to many fishes. The 96h-h LC₅₀ values of nano silver was 5 mg/L for Oncorhynchusmykiss (Soltani et al., 2010) and at 72-h for Daniorerio, it was 10-20 µg/L (Yeo and Yoom, 2009). Results showed that silver sulfide is much more toxic than the other two forms of silver (nano silver and silver nitrate). However, the LC_{50} value is not constant due to various factors such as age, length, weight and environmental factors and measurement of blood factors is required to assess toxicity of the substrate.

Hematological indices

Increase in erythrocyte indices (red blood cells, hemoglobin and hematocrit) often occur due to dehydration and hypoxia and subsequently increase the movement of red blood cells in blood flow. Another simple mechanism also occurs with alkalinity and increased oxygen demand as the mechanism forces kidney sensors to detect hypoxia and increase the movement of red blood cells (Di Giulio and Hinton, 2008).In addition, under stress conditions, immature red blood cells are released from the spleen and consequently, RBC, HB and HCT will increase (Molinero and Gonzalez, 1995; Shaluei et al., 2012). The results are in agreement with Khabbazi et al. (2015). They reported increase in RBC, HB and HCT of O.mykiss exposed to CuO nanoparticles. Also, Casillas et al. (1995) declared that RBC, HB and HCT of O. mykiss increased under stress condition. However, increasing red blood cells, hemoglobin and hematocrit were not significant in this study (P>0.05). Furthermore, MCH and MCHC decreased significantly (P<0.05) with increasing exposure time. Reduction in erythrocyte indices often occur due to anemia. In anemia, reduction in the number of red blood cells, hemoglobin and hematocrit are observed and may be due to bleeding, hemolysis or decreased generation of red blood cells (Di Giulio and Hinton, 2008). Heavy metals might alter the properties of hemoglobin by decreasing their affinity towards oxygen binding capacity thus rendering the erythrocytes more fragile and permeable probably resulting in cell welling deformation and damage (Witeska and Kosciuk, 2003). Many researchers have reported a significant decrease in MCH and MCHC infresh water fish exposed to heavy metals (Vutkuru, 2005; Shalaby, 2001). Overall, the perturbation in these blood indices may be attributed to a defense reaction against toxicity through the stimulation of erythropoiesis (Vinodhini and Narayanan, 2009). Fluctuation in hematological indices and decrease in MCH and MCHC proved that the toxic effect of $AgSO_4$ affects both metabolic and hemopoietic activities of goldfish.

The blood of goldfish showed significant increase in glucose during 96-h of silver sulfate in toxication. This might be due to the vulnerable stress induced by the silver sulfate which resulted in hyperglycemia (Fig. 1). Hyperglycemia is a common response to stress that occurs as a result of the effects of catecholamines and cortisol (Barton. 2002). The increased plasma glucose levels are consistent with those reported in Senegalese sole (Soleasenegalensis) after exposure 2-phenoxyethanol to (an anesthetic) (Weber et al., 2011) and in great sturgeon (Husohuso) (Shaluei et al., 2012). In addition, Almeida et al. (2001) declared that heavy metals increase blood glucose content because of intensive glycogen lysis and the synthesis of glucose from extra hepatic tissue proteins and amino acids. In this study, blood glucose increased after exposure to silver sulphate. However, this increase was significant at 24-h exposure (P<0.05). Insulin, the main factor in the balance of glucose is very low in fish (Velíšek et al., 2005). Many factors except toxicological factors (such as nutrition, time of blood sampling, bloodletting from dead fish, manipulation stress, procrastination in serum removal and blood serum integration) affect blood glucose (Rabitto et al., 2005). Significantly, the authors tried to consider all these factors in this study. Accordingly, feeding was stopped 24 h before blood sampling and bloodletting after which anesthesia and serum were removed immediately.

Cortisol is the most common hormone indicator of stress intensity in fishes (Shaluei et al., 2012). It is the principal glucocorticoid secreted by the inter-renal tissues (steroid genic cells) located in the head-kidney of teleost fish (Iwama et al.,

1999).Cortisol has significant negative correlation with blood glucose (Lehninger, 1975). In response to blood glucose reduction, increased cortisol is secreted from the adrenal gland cortex. Cortisol activates glycogenolys is and gluconeogenesis processes in fish but also causes an increase in the release of catecholamines from chromaffin cells which further increases glycogenolys is and modulates cardiovascular and respiratory functions (Reid et al. 1992, 1998). This process increases the substrate levels (glucose) to produce enough energy according to demand. However in this study, this increase was not significant (P>0.05). Furthermore, Martinéz-Porchas et al. (2009) stated that some factors can affect the intensity of response. They declared that factors that affect/modulate cortisol response may be from intrinsic nature when some factors depend basically on the genotype or phenotype of the organism and from the extrinsic nature when response is affected by external factors. However none of these factors were considered in this study.

Fluctuations in leukocyte indices as a non-specific immune cell (WBC. lymphocytes, neutrophils and monocytes)is appropriate considered an indicator associated with response to stress in fish (Stoskopf, 1993). Normal values of WBC are an indicator of fish health and body preparedness. However, changes in the quantitative and qualitative characteristics of blood cells occur when anomalies in blood components interfere with normal functions such as clinical inflammation, invasion of parasites or bacteria (Khabbazi et al., 2015; Savari et al., 2011). In response to stress conditions, reduction in WBC counts may indicate immune suppression while increasing values indicate a response to stress or infection (Adams, 2002). The total WBC countdecreased which might be due to malfunctioning of the hematopoietic system caused by exposure to AgSO4 (P>0.05). Al-Kahem (1995) reported a reduction in WBC count of fish exposed to chromium and noted it to be a consequence of significant decline in the number of lymphocytes and thrombocytes.

Lymphocyte is the most dominant differential leukocyte and responsible for many of the functions of the immune system in fish. Decrease in cell count, especially of lymphocytes usually occurs in fish subjected to stress (Elsaesser and Clem, 1986). Heavy metal intoxication always reduces white blood cells count, particularly lymphocytes (Witeska, 2003). According to Donaldson and Dye (1975), exposure to heavy metals in fish causes an increase in cortisol level which is responsible for a decrease in WBC, particularly in lymphocytes count and their activity. In fact, cortisol secreted during stress reaction shortens the life span of lymphocytes and promotes their apoptosis (Wyets et al., 1998, Verburg van Kemenade et al., 1999), and reduces their proliferation (Espelid et al., 1996). However in this study, lymphocytes increased significantly at 24 hours exposure to AgSO₄but decreased significantly after 96 hours. These results agree with those of Dick and Dixon (1985) and Vosyliene (1996). They reported a decrease in leukocyte count following acute exposure. metal In addition, many have reported lymphocytes researchers fish such reductionin as heteropneustesfossilis (Nath and Banerjee, 1996) and Cyprinuscarpio (Siwicki et al., 1990; Banaee et al., 2008) exposed to pesticides.

There was a significant decrease in neutrophil after 24 hours exposure (P<0.05) however, there was an increase after 48 and 96 hours. This shows that with increased exposure time, AgSO₄-induced infection and tissue damage increases. Banaee et al. (2008) stated that most infections result inneutrophilia. The degree of elevation often indicates the severity of the infection. Tissue damage from other causes also raises the neutrophil count. Poisoning and severe disease, like kidney failure all cause neutrophilia (Holland et al., 1997). Ghosh and Banerjee (1993) reported that neutrophile and eosinophile increased in *heteropneustesfossilis* after they were affected by Dimethoate in 96 h LC50 concentration.

CONCLUSION

This study suggested that the presence of AgSO₄ in an aquatic environment is toxic significant influence and has on hematological parameters in goldfish. It is notable to state that fish are constantly exposed to environmental stress resulting to serious metabolic crises. The above results clearly indicate that the usage of this heavy metal has generated great concern in the scientific community on its possible toxic effects both to aquatic flora and fauna as well as to humans.

REFERENCES

Adams, S.M. (2002). Biological indicators of aquatic ecosystem stress. American Fisheries Society. 656 p.

Ahmad, Z. (2011). Acute toxicity and hematological changes in common carp (*Cyprinus carpio*) caused by diazinon exposure. Afr. J. Biotechnol., 10 (63), 13852-13859.

Al-Kahem, H.F. (1995). Behavioral responses and changes in some haematological parameters of the cichlid fish, *Oreochromis niloticus*, exposed to trivalent chromium. J. King. Abdul. Aziz. Univ. Sci., 7,5-13.

Almeida, J.A., Novelli, E.L.B., Dal-Pai Silva, M. and AlvesJunior, R. (2001). Environmental cadmium exposure and metabolic responses of the Nile tilapia *Oreochromis niloticus*. Environ. Pollut., 114, 169-175.

Asharani, P.V., Wu, Y.L., Gong, Z. and Valiyaveettil, S. (2008). Toxicity of silver nanoparticles in zebrafish models. Nanotechnology, 19(25), 255102.

Banaee, M., Mirvagefei, A.R., Rafei, G.R. and Majazi Amiri, B. (2008).Effect of sub-lethal diazinon concentration on blood plasma biochemistry. Int. J. Environ. Res., 2(2), 189-198.

Barton, B.A. (2002). Stress in fishes: a diversity of responses with particular reference to changes in

circulating corticosteroids. Integr. Comp. Biol., 42(3), 517-525.

Bat, M., Akbulut, M., Culha, M., Gundogu, A. and Saltimis, H.H. (2000). Effect of Temperature on the Toxicity of Zinc, Copper and Lead to the Freshwater Amphipod Gammarus *pulex pulex* (L., 1758). Turk. J. Zool., 24, 409-415.

Birge, W.J. and Zuiderveen, J.A. (1995). The comparative toxicity of silver to aquatic biota. In Proc. 3rd Argentum Int. Conf. on the Transport, Fate, and Effects of Silver in the Environment, Washington, USA, pp 79-88.

Bols, N.C., Brubacher, J.L., Ganassin, R.C. and Lee, L.E.G. (2001). Ecotoxicology and innate immunity fish. Dev. Comp. Immunol., 25(8-9), 853-873.

Caruso, G., Maricchiolo, G., Micale, V., Genovese, L., Caruso, R. andDenaro, M.G. (2010). Physiological responses to starvation in the European eel (*Anguilla anguilla*): effects on haematological, biochemical, non-specific immune parameters andskin structures. Fish. Physiol. Biochem., 36, 71–83

Casillas, E. and Smith, L.S. (1974). Effects of stress on blood coagulation and haematology in rianbow trout exposed to hypoxia. J. Fish. Biol., 6, 379-380.

Coad, B.W. and Abdoli, A. (1993). Exotic fish species in the fresh waters of Iran. Zool. Middle. East., 9(1),65-80.

Davies, P.H., Goetti, J.R. and Sinley, J.R.(1978). Toxicity of silver to Rainbow Trout (*Salmo gairdneri*). Water Res., 12, 113-117.

Decie, S.I.V. and Lewis, S.M. (1991).Practical Hemotology, 7th Edition. Churchill Livingstone, London/Melbourne/New York.

Di Giulio, R.T. and Hinton, D.E.(2008).The Toxicology of Fishes. CRC Press

Dick, P.T. and Dixon, D.G. (1985). Changes in circulating blood cell levels of rainbow trout, *Salmogairdneri* Richardson, following acute and chronic exposure to copper. J. Fish. Biol., 26, 475-481.

Donaldson, E.M. and Dye, H.M. (1975). Corticosteroid concentrations in sockeye salmon (Oncorhynchus *nerka*) exposed to low concentrations of copper. J. Fish. Res. Bd. Can., 32, 533-539.

Eisler, R. (1996). Silver Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Department of the Interior, National Biological Service. Report 32; Biological Report 32. 44 p.

Elsaesser, C.F. and Clem, L.W. (1986). Haematological and immunological changes in channel catfish stressed by handling and transport. J. Fish. Biol., 28, 511-521.

Erickson, R.J., Brooke, L.T., Kahl, M.D., Venter, F.V., Harting, S.L., Markee, T.P. and Spehar, R.L. (1998). Effects of laboratory test conditions on the toxicity of silver to aquatic organisms. Environ.Toxiclo. Chem., 17(4), 572-578.

Esmaeili, H.R., Teimori, A., Owfi, F., Abbasi, K. and Coad, B.W. (2014). Alien and invasive freshwater fish species in Iran: Diversity, environmental impacts and management. Iran. J. Ichthyol., 1(2), 61-72.

Espelid, S., Lokken, G.B., Steiro, K. and Bogwald, J. (1996). Effects of cortisol and stress on the immune system in Atlantic Salmon (*Salmo salar* L.). Fish & Shellfish Immunol.,6, 95-110.

Fabrega, J., Luoma, S.N., Tyler, C.R., Galloway, T.S. and Lead, J.R. (2011). Silver nanoparticles: behaviour and effects in the aquatic environment. Environ. int., 37(2), 517-531.

Finney, D.(1971). Probit analysis; a statistical treatment of the sigmoid response curve. Cambridge, 256 p.

Ghosh, K. and Banerjee, V. (1993). Alteration in bloodparameters in the fish *Heteropneustesfossilis* exposed to dimethoate. Environ. Ecol., 11, 979-981.

Holland, M.M., Steven, M. and Gallin, J.I. (1997). Disorders of Granulocytes and Monocytes. In Harrison's Principles of Internal Medicine, edited by Anthony S. Fauci, et al. New York, McGraw-Hill.

Iwama, G.K., Vijayan, M.M., Forsyth, R.B. and Ackerman, P.A.(1999). Heat shock proteins and physiological stress in fish. Amer. Zool., 39, 901-909.

Khabbazi, M., Harsij, M., Hedayati, S.A., Gholipoor, H., Gerami, M.H. and Ghafari Farsani, H. Effect of CuO nanoparticles on some hematological indices of rainbow trout*Oncorhynchusmykiss* and their potential toxicity. Nanomed. J., 2(1), 67-73.

King, W.V., Hooper, B., Hillsgrove, S., Benton, C. and Berlinsky, D.L. (2005). The use of clove oil, metomidate, tricaine methanesulphonate and 2-phenoxyethanol for inducing anaesthesia and their effect on the cortisol stress response in black sea bass (*Centropristis striata* L.). Aquac. Res., 36,1442–1449.

Klaassen, C.D., Amdur,M.O. andDoull, J. (1986). Casarett and Doull's toxicology. The basic science of poisons. Third edition. Macmillan, New York. 974 pp.

Larkin, D.J. and Tjeerdema, R.S.(2000). Fate and effects of diazinon. Rev. Environ. Contam. Toxicol., 166, 49-82.

Lee, D.Y., Fortin, C. and Campbell, P.G. (2005). Contrasting effects of chloride on the toxicity of silver to two green algae, *Pseudokirchneriellasubcapitata* and *Chlamydomonasreinhardtii*. Aquat. Toxicoly., 75(2), 127-135.

Lehninger, A.L.(1975). Biochemistry: the molecular basis of cell structure and functions. Worth, New York, 659.

Lima. A.R., Curtis, C., Hammermeister, D.E., Call, D.J. and Felhaber, T.A.(1982).Acute Toxicity of Silver to Selected Fish and Invertebrates. Bul. Environ.Contam. Toxicol., 29(2), 184-189.

Lytle, P.E. (1984). Fate and speciation of silver in publicly owned treatment works. Environ. Toxicol. Chem., 3, 21–30.

Martinéz-Porchas, M., Martínez-Córdova, L.R. and Ramos-Enriquez, R.(2009).Cortisol and Glucose: Reliable indicators of fish stress?Panam. J. Aquat.Sci., 4(2), 158-178.

Molinero, A. and Gonzalez, J. (1995). Comparative effects of MS 222 and 2-phenoxyethanol on gilthead sea bream (*Sparusaurata* L.) during confinement. Comp. Biochem. Physiol., A: Comp. Physiol., 111(3), 405-414.

Mukherjee, K.L. (1988).Medical Laboratory Technology. Aprocedure manual for routine diagnostics tests, Vol I., Tata-McGraw- Hill, New Delhi. 48 p.

Nath, R. and Banerjee, V. (1996).Effect of pesticides methylparathion and cypermethrin on the air-breathing fish *Heteropneustesfossilis*. Environ. Ecol., 14, 163-165.

OECD (Organisation for Economic Co-operation and Development) (1993). OECD Guidelines for Testing of Chemicals OECD, Organization for Economic. Paris.

Pandey, S., Kumar, R., Sharma, S., Nagpure, N.S., Srivastava, S.K. and Verma, M.S. (2005). Acute toxicity bioassays of mercuric chloride and malathion on air-breathing fish *Channapunctatus* (Bloch). Ecotox. Environ. Safe., 61, 114-120.

Purcell, T.W. and Peters, J.J. (1998). Sources of silver in the environment. Environ. Toxicol. Chem., 17,539–546.

Rabitto, I.S., Alves Costa, J.R.M., Silva de Assis, H.C., Pelletier, E., Akaishi, F.M., Anjos, A., Randi, M.A. and Oliveira Riberio, C.A. (2005). Effects of dietary Pb (II) and tributyltin on neotropical fish, *Hopliasmalabaricus*: histopathological and biochemical findings. Ecotox. Environ. Safe., 60(2), 147-156.

Ratte, H.T. (1999). Bioaccumulation and toxicity of silver compounds: a review. Environ. Toxicol. Chem., 18(1), 89-108.

Reid, S.D., Moon, T.W. and Perry, S.F. (1992).Rainbow trout hepatocyte betaadrenoceptors, catecholamine responsiveness, and effects of cortisol. Am. J. Physiol., 262, 794-799.

Reid, S.G., Bernier, N.J. and Perry, S.F. (1998). The adrenergic stress response in fish: control of catecholamine storage and release.Comp. Biochem. Physiol. Part C., 120, 1-27.

Savari A, Hedayati A, Safahieh A, Movahedinia A. (2011). Characterization of blood cells and hematological parameters of yellowfinsea bream (*Acanthopagrus latus*) in some creeks of Persian Gulf. World. J. Zool., 6, 26–32.

Shafer, M.M., Overdier, J.T. and Armstrong, D.E. (1998). Removal, partitioning, and fate of silver and other metals in wastewater treatment plants and effluent-receiving streams. Environ. Toxicol. Chem., 17, 630–641.

Shahbazi Naserabad, S., Mirvaghefi, A., Gerami, M.H. and Ghafari Farsani, H. (2015). Acute Toxicity and Behavioral Changes of the Gold Fish (*Carassiusauratus*) Exposed to Malathion and Hinosan. Iran. J. Toxiclo., 8(27), 1203-1208.

Shalaby, A.M. (2001). Protective effect of Ascorbic acidagainst Mercury intoxication in Nile tilapia (*Oreochromis niloticus*). J. Egypt. Acad. Soc. Environ. Develop. (DEnvironmental studies), 2(3), 79 – 97.

Shaluei, F., Hedayati, A., Jahanbakhshi, A. and Baghfalaki, M. (2012).Physiological responses of great sturgeon (*Husohuso*) to different concentrations of 2-phenoxyethanol as an anesthetic. Fish. Physiol. Biochem., 38, 1627-1634.

Shaw, J.R., Wood, C.M., Birge, W.J. and Hogstrand, C. (1998). Toxicity of silver to the marine teleost (*Oligocottusmaculosus*): Effects of salinity and ammonia. Environ. Toxicol. Chem., 17(4), 594-600.

Soltani, M., Torabzadeh, N., Soltani, A.(2010). Toxicity of nanosilver suspension (Nanocide) in rainbow trout. First international congress on Aquatic animal health management and disease.

Stoskopf, M.K.(1993).Fish Medicine. W.B. Saunders Company, the University of California. 882 p.

Teles, M., Pacheco, M. and Santos, M.A. (2007). Endocrine and metabolic responses of *Anguilla anguilla* L. caged in a freshwater-wetland (Patera de Fermentelos-Portugal). Sci. Total.Environ., 372, 562–570

Velíšek, J., Svobodová, Z., Piačková, V. (2005).Effects of clove oil anaesthesia on

rainbowtrout (*Oncorhynchusmykiss*). Acta. Veterinaria. Brno., 74, 139-146.

Verburg van Kemenade, B.M., Nowak, B., Engelsma, M.Y. and Wyets, F.A. (1999). Differential effects of cortisol on apoptosis and proliferation of carp Blymphocytes from head kidney, spleen and blood. Fish. Shellfish. Immunol., 9, 405-415.

Vinodhini, R. andNarayanan, M. (2009). The Impact of heavy metals on the hematological parameters in Common carp (*Cyprinus carpio*). Iran. J. Environ. Health. Sci. Eng., 6(1), 23-28

Vosyliene, M.Z. (1996). The effect of long-term exposure to copper on physiological parameters of rainbow trout *Oncorhynchusmykiss*. 2. Studies of hematological parameters. Ekologija, 1, 3-6.

Vutkuru, S.S. (2005). Acute effects of Hexavalent chromiumon survival, oxygen consumption, Hematologicalparameters and some biochemical profiles of the IndianMajor Carp, *Labeorohita*. Int. J. Environ. Res. Public.Health., 2, 456 – 462.

Weber, R.A., Perez-Maceira, J.J., Peleteiro, J.B., GarcIa-Martin, L. and Aldegunde, M. (2011). Effects of acute exposure to 2-phenoxyethanol, clove oil, MS-222, and metomidate on primary and secondary stress responses in Senegalese sole (*Soleasenegalensis* Kaup 1858). Aquaculture, 321, 108–112.

Wintrobe, M.M. (1978).Clinical Hematology. Kipton, London. Zar, JH. 1974. Biostatistical Analysis. Prentice-Hall, Engelwood Cliffs, NJ. 260 p.

Witeska, M. and Jezierska, B. (1994). The effect of cadmium and lead on selected blood parameters of common carp. Arch. Pol. Fish., 2, 123-132.

Witeska, M. and Kosciuk, B. (2003). Changes in common carpblood after short-term zinc exposure. Environ. Sci. Pollut.Res., 3, 15 - 24.

Wood, C.M., Playle, R.C. and Hogstrand, C. (1999). Physiology and modeling of mechanisms of silver uptake and toxicity in fish. Environ. Toxicol. Chem., 18 (1), 71-83.

Wyets, F.A.A., Flikt, G. and Verburg van Kemenade, B.M.L. (1998). Cortisol inhibits apoptosis in carp neutrophilic granulocytes. Dev. Comp. Immunol.,22, 563-572.

Yeo, M.K. and Yoon, J.W. (2009). Comparison of the effects of nano-silver antibacterial coatings andsilver ions on zebrafish embryogenesis. Mol. Cell. Toxicol., 5, 23–31.