Capelli, L., Selena Sironi, R.D.R. and Guillot, J.M.(2013). Measuring Odours in the Environment vs. Dispersion Modelling: A Review. Atmospheric Environment, 79: 731–43.
Caputo, M., Giménez, M. and Schlamp, M. (2003). Intercomparison of Atmospheric Dispersion Models. Atmospheric Environment, 37(18): 2435–49.
Chen, R. et al. (2010). Ambient Air Pollution and Daily Mortality in Anshan, China: A Time-Stratified Case-Crossover Analysis. The Science of the total environment, 408(24): 6086–91. Choi, Y., Hyde, P. and Fernando, H.J.S. (2006). Modeling of Episodic Particulate Matter Events Using a 3-D Air Quality Model with Fine Grid: Applications to a Pair of Cities in the US/Mexico Border. Atmospheric Environment, 40(27): 5181–5201. Garg, A. (2011). Pro-Equity Effects of Ancillary Benefits of Climate Change Policies: A Case Study of Human Health Impacts of Outdoor Air Pollution in New Delhi. World Development, 39(6): 1002–25. Ghannam, K., and El-Fadel, M. (2013). Emissions Characterization and Regulatory Compliance at an Industrial Complex: An Integrated MM5/CALPUFF Approach. Atmospheric Environment, 69: 156–69. Holmes, N.S., and Morawska, L. (2006). A Review of Dispersion Modelling and Its Application to the Dispersion of Particles: An Overview of Different Dispersion Models Available. Atmospheric Environment, 40(30): 5902–28. Kaur, S., Nieuwenhuijsen, M. and Colvile, R. (2005). Personal Exposure of Street Canyon Intersection Users to PM2.5, Ultrafine Particle Counts and Carbon Monoxide in Central London, UK. Atmospheric Environment, 39(20): 3629–41. Maroko, A.R. (2012). Using Air Dispersion Modeling and Proximity Analysis to Assess Chronic Exposure to Fine Particulate Matter and Environmental Justice in New York City. Applied Geography, 34: 533–47.
Misra, A., Roorda, M.J. and MacLean, H.L. (2013). An Integrated Modelling Approach to Estimate Urban Traffic Emissions. Atmospheric Environment, 73: 81–91. Morselli, M. et al. (2012). Integration of an Atmospheric Dispersion Model with a Dynamic Multimedia Fate Model: Development and Illustration. Environmental pollution (Barking, Essex : 1987), 164: 182–87. O’Shaughnessy, P.T. and Altmaier, R. (2011). Use of AERMOD to Determine a Hydrogen Sulfide Emission Factor for Swine Operations by Inverse Modeling. Atmospheric environment (Oxford, England : 1994), 45(27): 4617–25. Rood, A.S. (2014). Performance Evaluation of AERMOD, CALPUFF, and Legacy Air Dispersion Models Using the Winter Validation Tracer Study Dataset. Atmospheric Environment, 89: 707–20. Singh, K.P, Shikha Gupta, A.K., and Prasad Shukla, S. (2012). Linear and Nonlinear Modeling Approaches for Urban Air Quality Prediction. The Science of the total environment, 426: 244–55. Tartakovsky, D., Broday, D.M. and Stern, E. (2013). Evaluation of AERMOD and CALPUFF for Predicting Ambient Concentrations of Total Suspended Particulate Matter (TSP) Emissions from a Quarry in Complex Terrain. Environmental pollution (Barking, Essex : 1987), 179: 138–45. Wu, Y. et al. (2006). Ambient Air Particulate Dry Deposition, Concentrations and Metallic Elements at Taichung Harbor near Taiwan Strait. Atmospheric Research, 79(1): 52–66.
Zou, B. et al. (2011). Spatial-Temporal Variations in Regional Ambient Sulfur Dioxide Concentration and Source-Contribution Analysis: A Dispersion Modeling Approach. Atmospheric Environment, 45(28): 4977–85.