Baalousha, H. (2010). Assessment of a groundwater quality monitoring network using vulnerability mapping and geostatistics: A case study from Heretaunga Plains, New Zealan. Agr Water Manage, 97, 240–246.
Cameron,K., and Hunter, P. (2002). Using spatial models and Kriging techniques to optimize long-term ground-water monitoring networks. Environmetrics, 13, 629-656.
Costa, A., and Soares, A. (2008). Homogenization of Climate Data: Review and New Perspectives Using Geostatistics. Math Geosci, 41, 291–305.
David, M. (1977). Geostatistical Ore Reserve Estimation. Environ Monit Assess, 82, 311–320.
Feng-guang, Y., Shu-you, C., Xing-nian, L. and Ke-jun, Y. (2008). Design of groundwater level monitoring network with ordinary kriging. J. Hydrodyn, 20, 339–346.
Hoseini, Y. (2013). Use of geostatistical analysis to optimize estimation of hydraulic conductivity for drainage projects. Intl. J. Agron Plant Prod, 4, 236-241.
Hudak, P. F., and Sanmanee, S. (2003). Spatial patterns of nitrate, chloride, sulfate, and fluoride concentrations in the woodbine aquifer of North-Central Texas.
Ishaku, J. M. (2011). Assessment of groundwater quality index for Jimeta-Yolaarea, Northeastern Nigeria. J. Geol Min Res, 3, 219-231.
Jalali, M. (2007). Hydrochemical identification of groundwater resources and their changes under the impacts of human activity in Chah basin in Western Iran. Environ Monit Assess, 130, 347–364
Karimi, H., Naderi, F. A. and Mehdizadeh. Z. (2011). Capability of Mehran plain's groundwater for irrigation of agriculture lands in GIS environment. J. Irrig Wat Eng, 2, 1 - 8.
Lee, J., Jang, S., Wang, J., and Chen-Wuing, L. (2007). Evaluation of potential health risk of arsenic-affected groundwater using indicator Kriging and dose response model. Sci Total Environ, 1, 151–162.
Maghami, Y. Ghezavati, R,.Vali, A,. and Sharfi, S. (2011). Evaluation of interpolation methods for mapping water quality using GIS (Case study: Abadeh- Iran). J. Geogr. Reg. Plann, 22, 182-171.
Nas, B., and Berktay. A. (2010). Groundwater quality mapping in urban groundwater using GIS. Environ Monit Assess, 160, 215-227.
Nunes, L. M., E. Paralta, M.C. Cunha., and L. Ribeiro. 2007. Comparison of variance-reduction and space filling approaches for the design of environmental monitoring networks. Comput Aided Civ Infrastruct Eng, 22, 489–498.
Pin Lin. Y., Kuo Chang, T. and Po Teng. T. (2001). Characterization of soil lead by comparing sequential Gaussian simulation simulated annealing simulation and Kriging methods. Environ geol, 41, 189-199.
Reed, P., Minsker, B. and Valocchi. A. J. (2010). Cost-effective long-term groundwater monitoring design using a genetic algorithm and global mass interpolation. Water Resour Res, 36, 3731-3741.
Stites, W, and Kraft, G. J. (2001). Nitrate and chloride loading to groundwater from an irrigated North-Central U.S. Sand- Plain vegetable field. J. Environ Qual, 30, 1176–1184.
UNDP, UNEP, and World Bank. (2000). World Resources 2000-2001. Washington DC, World Resources Institute.
Yan. Z., ZH. Yong-zhang, W., Lin-feng, W., Zheng-hai, A., Yan-fei, L., Hong-zhong, Z., Chang-yu, A., Jin, A., Wen-chao, L. and Le. G. (2013). Mineralization-related geochemical anomalies derived from stream sediment geochemical data using multiracial analysis in Pangxidong area of Qinzhou-Hangzhou tectonic joint belt, Guangdong Province, China. J. Cent. South Univ. 20, 184−192.
Zehtabian, Gh., Jaanfaza, A. Mohammad H., Asgari, M. and Nematollahi, C. (2010). Modeling of spatial variations of some groundwater chemical properties (case study: Garmsar watershed). Journal of Range and Desert Research of Iran, 17, 61-73.