Abhilash, P.C., Jamil, S. and Singh, N. (2009). Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol. Adv., 7, 474-488.
Ali, H., Khan, E. and Sajad, M.A. (2013). Phytoremediation of heavy metals- concepts and applications. Chemosphere, 91 (7), 869-881.
Allard, A.S., Remberger, M. and Neilson, A. (2000). The negative impact of aging on the loss of PAH components in a creosote-contaminated soil. Int. Biodeter. Biodegr., 46, 43-49.
Alvarez-Lopez, V., Prieto-Fernandez, A., Cabello-Conejo, M.I. and Kidd, P.S. (2016). Organic amendments for improving biomass production and metal yield of Ni-hyperaccumulating plants. Sci. Total Environ. 548, 370-379.
Banks, M.K., Schwab, P., Liu, B., Kulakow, P.A., Smith, J.S. and Kim, R. (2003). The effect of plants on the degradation and toxicity of petroleum contaminants in soil: A field assessment. Adv. Biochem. Eng. Biotech. 78, 75-96.
Bisht, S., Pandey, P., Bhargava, B., Sharma, S., Kumar, V. and Sharma, K.D. (2015). Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Braz. J. Microbiol., 46(1), 7-21.
Burken, J.G. (2003). Uptake and metabolism of organic compounds: green-liver model. In: S.C. McCutcheon and J.L. Schooner (Eds), Phytoremediation: Transformation and Control of Contaminants, New York: Wiley, 59-84.
Castro, S., Davis, L.C. and Erickson, L.E. (2004). Temperature and pH effects on plant uptake of benzotriazoles by sunflowers in hydroponic culture. Int. J. Phytoremediation. 6(3), 209-25.
Cebron, A., Beguiristain, T., Faure, P., Norini, M.P., Masfaraud, J.F. and Leyval, C. (2009). Influence of vegetation on the in situ bacterial community and polycyclic aromatic hydrocarbon (PAH) degraders in aged PAH-contaminated or thermal-desorption-treated Soil. Appl. Environ. Microbiol. 75(19), 6322-6330.
Chekol, T., Vough, L. and Chaney, R. (2004). Phytoremediation of polychlorinated biphenyl-contaminated soils: the rhizosphere effect. Environ. Int., 30, 799-804.
Chen, P., Pickard, M.A. and Gray, M.R. (2000). Surfactant inhibition of bacterial growth on solid anthracene. Biodegradation, 11, 341-347.
Chigbo, C., Batty, L. and Bartlett, R. (2013). Interactions of copper and pyrene on phytoremediation potential of Brassica juncea in copper–pyrene co-contaminated soil. Chemosphere, 90 (10), 2542-2548.
Cofield, N., Banks, M.K. and Schwab, A.P. (2007). Evaluation of hydrophobicity in PAH-contaminated soils during phytoremediation. Environ. Pollut., 145, 60-67.
Cofield, N., Banks, M.K. and Schwab, A.P. (2008). Lability of polycyclic aromatic hydrocarbons in the rhizosphere. Chemosphere, 70 (9), 1644-1652.
Damastri, C., Chiarini, L., Cantale, C., Bevivno, A. and Tabacchioni, S. (1999). Soil type and maize cultivar affect the genetic diversity of maize-associated Burkholderia cepacia populations. Microb. Ecol., 38, 273-284.
Davis, L.C., Erickson, L.E., Narayanan, N. and Zhang, Q. (2003). Modeling and design of phytoremediation. In: S.C. McCutcheon and J.L. Schooner (Eds.), Phytoremediation: Transformation and Control of Contaminants New York: Wiley. 663-694.
Denys, S., Rollin, C., Guillot, F. and Baroudi, H. (2006). In-situ phytoremediation of PAHs contaminated soils following a bioremediation treatment. Water Air Soil Pollut., 6, 299-315.
Dietz, A.C. and Schnoor, J.L. (2001). Advances in Phytoremediation. Environ. Health Persp., 109, 163-168.
Doty, S.L., Shang, T.Q., Wilson, A.M., Tangen, J., Westergreen, A.D., Newman, L.A., Strand, S.E. and Gordon, M.P. (2000). Enhanced metabolism of halogenated hydrocarbons in transgenic plants containing mammalian cytochrome P450 2E1. Appl. Biol. Sci., 97(12), 6287-6291.
Escalante-Espinosa, E., Gallegos-Martınez, M.E., Favela-Torres, E. and Gutierrez-Rojas, M. (2005). Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. inoculated with a microbial consortium in a model system. Chemosphere, 59, 405-413.
Esteve-Nunez, A., Caballero, A. and Ramos, J.L. (2001). Biological Degradation of 2,4,6-Trinitrotoluene. Microbiol. Mol. Boil. Rev. 65 (3), 335-352.
Grayston, S.J., Wang, S., Campbell, C.D., Edwards, A.C. (1998). Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol. Biochem., 30, 369-378.
Huang, X.D., El-Alawi, Y., Penrose, D., Glick, B. and Greenberg, B. (2004). A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ. Pollut., 130, 465-476.
Hutchinson, S.L., Banks, M.K. and Schwab, A.P. (2001). Phytoremediation of aged petroleum sludge: Effect of inorganic fertilizer. J. Environ. Qual., 30, 395-403.
James, C.A. and Strand, S.E. (2009). Phytoremediation of small organic contaminants using transgenic plants. Curr. Opin. Biotechnol. 20(2), 237-241.
Johnson, D.L., Anderson, D.R. and McGrath, S.P. (2005). Soil microbial response during the phytoremediation of a PAH contaminated soil. Soil Biol. Biochem., 37 (12), 2334-2336.
Kulakow, P.A., Schwab, A.P. and Banks, M.K. (2000). Screening plant species for growth on weathered, petroleum hydrocarbon-contaminated sediments. Int. J. Phytorem., 2, 297-317.
Leigh, M.B., Fletcher, J.S., Fu, X. and Schmitz, F.J. (2002). Root turnover: An important source of microbial substrates in rhizosphere remediation of recalcitrant contaminants. Environ. Sci. Technol., 36, 1579-1583.
Li, J.T., Baker, A.J.M., Ye, Z.H., Wang, H.B. and Shu, W.S. (2012). Phytoextraction of Cd-Contaminated Soils: Current Status and Future Challenges. Crit. Rev. Env. Sci. Tec. 42 (20), 2113-2152.
Liu, H., Meng, F., Tong, Y. and Chi, J. (2014a). Effect of plant density on phytoremediation of polycyclic aromatic hydrocarbons contaminated sediments with Vallisneria spiralis. Ecol. Eng., 73, 380-385.
Liu, R., Xiao, N., Wei, S., Zhao, L. and An, J. (2014b). Rhizosphere effects of PAH-contaminated soil phytoremediation using a special plant named Fire Phoenix. Sci. Total Environ., 473, 350-358.
Macek, T., Mackova, M. and Kas, J. (2000). Exploitation of plants for the removal of organics in environmental remediation. Biotechnol. Adv., 18, 23-34.
Marrugo-Negrete, J., Durango-Hernández, J., Pinedo-Hernández, J., Olivero-Verbel, J. and Díez, S. (2013). Phytoremediation of mercury-contaminated soils by Jatropha curcas. Chemosphere, 127, 58-63.
McGuinness, M. and Dowling, D. (2009). Plant-Associated Bacterial Degradation of Toxic Organic Compounds in Soil. Int. J. Env. Res. Public Health., 6(8): 2226-2247.
Merkl, N., Schultze-Kraft, R. and Infante, C. (2005). Assessment of tropical grasses and legumes for phytoremediation of petroleum-contaminated soils. Water Air Soil Pollut., 165, 195-209.
Miethling, R., Wieland, G., Backhaus, H. and Tebbe, C.C. (2000). Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L 33. Microb. Ecol., 40, 43-56.
Mitton, F.M., Gonzalez, M., Monserrat, J.M. and Miglioranza, K.S. (2016). Potential use of edible crops in the phytoremediation of endosulfan residues in soil. Chemosphere, 148, 300-306.
Muratova, A., Hubner, T., Tischer, S., Turkovskaya, O., Möder, M. and Kuschk, P. (2003). Plant–rhizosphere-microflora association during phytoremediation of PAH-contaminated soil. Int. J. Phytoremediation. 5, 137-151.
Nedunuri, K.V., Govindaraju, R.S., Banks, M.K., Schwab, A.P. and Chen, Z. (2000). Evaluation of phytoremediation for field-scale degradation of total petroleum hydrocarbons. J. Env. Eng., 126 (6), 483-490.
Negri, M.C., Gatliff, E.G., Quinn, J.J. and Hinchman, R.R. (2003). Root development and rooting at depths. In: S.C. McCutcheon and J.L. Schooner (Eds.), Phytoremediation: Transformation and Control of Contaminants, New York: Wiley. 233-262.
Parrish, D.Z., Banks, M.K. and Schwab, A.P. (2005). Assessment of contaminant lability during phytoremediation of polycyclic aromatic hydrocarbon impacted soil. Environmen. Pollut., 137, 187-197.
Peuke, A.D. and Rennenberg, H. (2005). Phytoremediation. EMBO Rep. 6(6), 497-501.
Phillips, C.J., Harris, D., Dollhopf, S.L., Gross, K.L., Prosser, J.I. and Paul, E.A. (2000). Effects of agronomic treatments on structure and function of ammonia-oxidizing communities. Appl. Environ. Microbiol., 66, 5410-5418.
Pilon-Smits, E. (2005). Phytoremediation. Annu. RePlant Biol., 56, 15-39.
Rezek, J., Wiesche, C., Mackova, M., Zadrazil, F. and Macek, T. (2008). The effect of ryegrass (Lolium perenne) on decrease of PAH content in long term contaminated soil. Chemosphere, 70 (9), 1603-1608.
Riser-Roberts, E. (1998). Remediation of petroleum contaminated soils: biological, physical and chemical processes. Boston: CRC Press.
Salt, D.E., Smith, R.D. and Raskin, I. (1998). Phytoremediation. Annu. RePlant Physiol. Plant Mol. Biol., 49, 643-668.
Sessitsch, A., Kuffner, M. and Kidd, P. (2013). The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Bio. Biochem. 60, 182-194.
Siciliano, S.D., Germida, J.J., Banks, K. and Greer, C.W. (2003). Changes in Microbial Community Composition and Function during a Polyaromatic Hydrocarbon Phytoremediation Field Trial. Appl. Environ. Microbiol., 69 (1), 483-489.
Singh, O. and Jain, R.K. (2003). Phytoremediation of toxic aromatic pollutants from soil. Appl. Microbiol. Biotechnol., 63, 128-135.
Tassi, E., Barbafieri, M., Cervelli, S., Petruzzelli, G., Pedron, F. and Szymura, I. (2004). Phytoremediation test in PAH contaminated soil. Agrochemica. XL VIII, 73-76.
Thompson, P.L., Ramer, L.A., and Schnoor, J.L. (1998). Uptake and transformation of TNT by hybrid poplar trees. Environ. Sci. Technol., 32, 975-980.
Truu, J., Karme, L., Talpsep, E., Heinaru. E., Vedler, E. and Heinaru, A. (2003). Phytoremediation of soil oil shale waste from the chemical industry. Acta. Biotechnol., 23, 301-307.
US EPA (2000). Introduction to phytoremediation. EPA/600/R-99/107 Report, Washington DC.
Van Aken, B. (2009). Transgenic plants for enhanced phytoremediation of toxic explosives. Curr. Opin. Biotechnol., 20 (22), 231-236.
Xiao, N., Liu, R., Jin, C. and Dai, Y. (2015). Efficiency of five ornamental plant species in the phytoremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil. Ecol. Eng., 75, 384-391.
Yu, X. Z., Trapp, S., Zhou, P.H. and Chen, L. (2007). Effect of Temperature on the Uptake and Metabolism of Cyanide by Weeping Willows. Int. J. Phytoremediation., 9(3), 243-255.