Modeling for vehicular pollution in urban region; A review

Document Type : Review Paper

Author

Centre for Environmental Science and Engineering, Indian Institute of Technology, Bombay, Mumbai-400 076, India

Abstract

Air pollution is one of the major threats to environment in the present time. Increase in degree of urbanization is a major cause of this air pollution. Due to urbanization, vehicular activities are continuously increasing at a tremendous rate. Mobile or vehicular pollution is predominantly degrading the air quality worldwide. Thus, air quality management is necessary for dealing with this severe problem. The first step to deal with this air pollution problem is to find out the existing concentration of air pollutants in the atmosphere due to vehicular activities. It is not possible to establish ambient air monitoring stations everywhere, especially in developing countries as it is a costly process. Hence, vehicular air quality models are used to predict the concentration of different pollutants in the atmosphere. This review covers the simulation of vehicular emission by different types of models for estimating the pollutant concentration in ambient air from vehicular emissions. The models predict concentrations of pollutants in time and space and relate it to the dependent variables. These can also be used to predict the concentration of pollutants in the future. These models can be useful for imposing regulations by governments and to test techniques for controlling pollutant emissions. This review also discusses where and how the respective models can be used.

Keywords


ARAI (2007). Air quality monitoring project-Indian clean air programme (ICAP). “Emission Factor development for Indian Vehicles”, ARAI, Pune, India.
Aquilina, N. and Micallef, A. (2003). Evaluation of the Operational Street Pollution Model Using Data from European Cities. Env. Mont Asses., 95, 75-96.
Assael, M.J.Ã., Delaki, M. & Kakosimos, K.E. (2008). Applying the OSPM model to the calculation of PM 10 concentration levels in the historical centre of the city of Thessaloniki. Atmospheric Environment, 42, 65–77. doi:10.1016/j.atmosenv.2007.09.029.
Alves, C.A., Gomes, J., Nunes, T., Duarte, M., Calvo, A., Custódio, D., Pio, C., Karanasiou, A. and Querol, X. (2014). Size-segregated particulate matter and gaseous emissions from motor vehicles in a road tunnel. Atmos. Res. 153, 134–144. doi:10.1016/j.atmosres.2014.08.002.
Banerjee, T., Barman, S.C. and Srivastava, R.K. (2011). Application of air pollution dispersion modeling for source-contribution assessment and model performance evaluation at integrated industrial estate-Pantnagar. Environmental pollution (Barking, Essex : 1987), 159(4), 865–75. doi:10.1016/j.envpol.2010.12.026.
Barratt, R. (2000). Atmospheric dispersion modeling- An introduction to practical applications, Business and Environment Practitioner Series, Earthscan Publications Limited, London (UK).
Berkowicz, R. (2000). OSPM- a parameterised street pollution model. Environmental monitoring and assessment, 65, 323–331.
Benson, P.E. (1992). A review of the development and application of the CALINE 3 and 4 models. Atmos. Env. 26B (3), 379-390.
Benson, P.E. (1979). CALINE -3: A versatile dispserion model for prediction air pollutant levels near highways and arterial roads. Final Report. FHWA/CA/TL-79/23 California Department of Transportation, Sacramento, CA.
Berkowicz, R., Ketzel, M., Solvang, S., Hvidberg, M. and Raaschou-nielsen, O. (2008). Evaluation and application of OSPM for traffic pollution assessment for a large number of street locations. Environmental Modeling & Software, 23, 296–303. doi:10.1016/j.envsoft.2007.04.007.
Berkowicz, R., Winther, M. and Ketzel, M. (2006). Traffic pollution modeling and emission data. Environmental Modeling & Software, 21(4), 454–460. doi:10.1016/j.envsoft.2004.06.013.
Brandt, J., Silver, J.D., Christensen, J.H., Andersen, M.S., Bønløkke, J.H., Sigsgaard, T., et al. (2013). Assessment of past, present and future health-cost externalities of air pollution in Europe and the contribution from international ship traffic using the EVA model system. Atmospheric Chemistry and Physics, 13(15), 7747–7764. doi:10.5194/acp-13-7747-2013.
Briggs, D.J., Hough. D., Gulliver, W., Elliott, P., Kingham, S. and Small Bone, K. (2000). A regression-based method for mapping traffic-related air pollution: application and testing in four contrasting urban environments. Sci. of The Tot. Env., 253(1-3), 151-67.
Brzezinski, D.J. and Newell, T.P. (2000). A Revised Model for Estimation of Highway Vehicle Emissions. Air Waste Manag. Assoc. EPA420-S-9, 1–18.
Casandy, G.T. (1972). Crosswind Shear Effect on Atmospheric Diffusion. Atmos. Env., 6, 221-232.
Cassidy, T., Inglis, G., Wiysonge, C. and Matzopoulos, R. (2014). Health & Place A systematic review of the effects of poverty deconcentration and urban upgrading on youth violence. Health & Place, 26, 78–87. doi:10.1016/j.healthplace.2013.12.009.
Cheng, S., Lang, J., Zhou, Y., Han, L., Wang, G. and Chen, D. (2013). A new monitoring-simulation-source apportionment approach for investigating the vehicular emission contribution to the PM2.5 pollution in Beijing, China. Atmos. Environ. 79, 308–316. doi:10.1016/j.atmosenv.2013.06.043.
Chock, D.P. (1978). A line source model for dispersion near Roadways. Atmos. Env., 12, 823–829.
Cimorelli, A.J., Perry, S.G., Venkatram, A., Weil, J.C., Paine, R.J., Wilson, Robert, B., et al. (2004). AERMOD : Description of Model Formulation. EPA-454/R-03-004, USEPA, USA.
Coelho, M.C., Fontes, T., Bandeira, J.M., Pereira, S.R., Tchepel, O., Dias, D., Sá, E., Amorim, J.H. and Borrego, C. (2014). Assessment of potential improvements on regional air quality modeling related with implementation of a detailed methodology for traffic emission estimation. Sci. Total Environ. 470-471, 127–137. doi:10.1016/j.scitotenv.2013.09.042.
CPCB (2001). Vehicular Pollution Control in India, Technical and Non-Technical Measure Policy. Cent. Pollut. Control Board, Minist. Environemntal For. Gov. India.
Fan, X., Lam, K.C. and Yu, Q. (2012). Differential exposure of the urban population to vehicular air pollution in Hong Kong. Science of the Total Environment, 426, 211–219. doi:10.1016/j.scitotenv.2012.03.057.
Fensterstock, J.C., Kurtzweg, J.A. and Ozolins, G. (1971). Reduction of Air Pollution Potential through Environmental Planning, Journal of the Air Pollution Control Association 21(7), 395-399. DOI: 10.1080/00022470.1971.10469547.
Fenger, J. (2009). Air pollution in the last 50 years - From local to global. Atmos. Env., 43(1), 13–22. doi:10.1016/j.atmosenv.2008.09.061.
Fridell, E., Haeger-Eugensson, M., Moldanova, J., Forsberg, B. and Sjöberg, K. (2014). A modeling study of the impact on air quality and health due to the emissions from E85 and petrol fuelled cars in Sweden. Atmospheric Environment, 82, 1–8. doi:10.1016/j.atmosenv.2013.10.002.
Gulia, S., Shiva Nagendra, S.M., Khare, M. and Khanna, I. (2015). Urban air quality management- a review. Atmospheric Pollution Research, 6(2), 286–304. doi:10.5094/APR.2015.033.
Guttikunda, S.K. and Goel, R. (2013). Health impacts of particulate pollution in a megacity-Delhi, India. Environ. Dev. 6, 8–20. doi:10.1016/j.envdev.2012.12.002.
Hanna, S.R., Briggs, G.A. and Hosker, P.R. (1982). Handbook on Atmospheric Diffusion, Technical information centre USDOE Chapter 9: 59-60.
Hvidberg, M. and Jensen, S.S. (2011). Evaluation of AirGIS : a GIS-based air pollution and human exposure modeling system Matthias Ketzel, Ruwim Berkowicz, Ole Raaschou-Nielsen. International Journal of Environment and Pollution, 47, 226–238.
Ilyas, Z.S., Khattak, A.I., Nasir, S.M., Qurashi, T. and Durrani, R. (2010). Air pollution assessment in urban areas and its impact on human health in the city of Quetta, Pakistan. Clean Techn Environ Policy, 12, 291–299. doi:10.1007/s10098-009-0209-4.
Jiang, P., Chen, Y., Geng, Y., Dong, W., Xue, B., Xu, B. and Li, W. (2013). Analysis of the co-bene fi ts of climate change mitigation and air pollution reduction in China. J. of Cleaner Production, 58, 130–137. doi:10.1016/j.jclepro.2013.07.042.
Jiménez-guerrero, P., Jorba, O., Baldasano, J. M. and Gassó, S. (2007). The use of a modeling system as a tool for air quality management : Annual high-resolution simulations and evaluation. Science of the Total Environment, 390, 323–340. doi:10.1016/j.scitotenv.2007.10.025.
Jin, S. and Demerjian, K. (1993). A Photochemical Box Model for Urban Air Quality Study. Atmospheric Environment, 27B(4), 371–387.
Johnson, W.B., Ludwig, F.L., Dabbrdt, W.F. and Allen, R.J. (1971). Field study for an initial evaluation of an urban diffusion model for carbon monoxide. Comprehensive Report For Coordinating Research Institute and EPA Contract. Stanford Research Institute, Milano park, Calinfornia. CAPA-3-68, 1-69.
Kakosimos, K.E., Hertel, D.O. and B.C.M.K. (2010). Operational Street Pollution Model (OSPM)– a review of performed application and validation studies, and future prospects. Environmental Chemistry, 7, 485–503. doi:10.1071/EN10070.
Kampa, M. and Castanas, E. (2008). Human health effects of air pollution. Environmental Pollution, 151(2), 362–367. doi:10.1016/j.envpol.2007.06.012.
Kan, H., Chen, R. and Tong, S. (2012). Ambient air pollution, climate change, and population health in China. Environment international, 42, 10–9. doi:10.1016/j.envint.2011.03.003.
Kan, H., Huang, W., Chen, B. and Zhao, N. (2009). Impact of outdoor air pollution on cardiovascular health in Mainland China. CVD Prevention and Control, 4(1), 71–78. doi:10.1016/j.cvdpc.2008.08.004.
Kesarkar, A.P., Dalvi, M., Kaginalkar, A. and Ojha, A. (2007). Coupling of the Weather Research and Forecasting Model with AERMOD for pollutant dispersion modeling. A case study for PM10 dispersion over Pune, India. Atmospheric Environment, 41(9), 1976–1988. doi:10.1016/j.atmosenv.2006.10.042.
Ketzel, M., Ss, J., Brandt, J., Ellermann, T., Hr, O., Berkowicz, R. and Hertel, O. (2012). Evaluation of the Street Pollution Model OSPM for Measurements at 12 Streets Stations Using a Newly Developed and Freely Available Evaluation Tool. Civil & Environmental Engineering, S1:004, 1–11. doi:10.4172/2165-784X.S1-004.
Kukkonen, J., Partanen, L., Karppinen, A. and Walden, J. (2003). Evaluation of the OSPM model combined with an urban background model against the data measured in 1997 in Runeberg Street, Helsinki. Atmospheric Environment, 37, 1101–1112. doi:10.1016/S1352-2310(02)00957-3.
Kukkonen, J., Valkonen, E., Walden, J., Koskentalo, T., Aarnio, K., Karppinen, A., et al. (2001). A measurement campaign in a street canyon in Helsinki and comparison of results with predictions of the OSPM model. Atmospheric Environment, 35, 231–243.
Kumar, A., Dikshit, A.K., Fatima, S., Patil, R.S. (2015). Application of WRF model for vehicular pollution modeling using AERMOD. Atmos. and Cli. Sci., 5, 57–62.
Krewski, D. and Rainham, D. (2007). Ambient Air Pollution and Population Health : Overview. Journal of Toxicology and Environmental Health, Part A, 70, 275–283. doi:10.1080/15287390600884859.
Kristiansson, M., Sörman, K., Tekwe, C. and Calderón-garcidueñas, L. (2015). Urban air pollution, poverty, violence and health – Neurological and immunological aspects as mediating factors. Environmental Research, 140, 511–513. doi:10.1016/j.envres.2015.05.013.
Lai, A.C.K., Thatcher, T.L. and Nazaroff, W.W. (2012). Inhalation Transfer Factors for Air Pollution Health Risk Assessment. Journal of the Air & Waste Management Association, 50, 1688–1699. doi:10.1080/10473289.2000.10464196.
Luhar, A.K. and Patil, R.S. (1989). A General Finite Line Source Model For Vehicular Pollution Prediction” Atmos. Env., 23, 555-562.
Maantay, J. (2007). Asthma and air pollution in the Bronx: methodological and data considerations in using GIS for environmental justice and health research. Health & place, 13(1), 32–56. doi:10.1016/j.healthplace.2005.09.009.
Ma, J., Yi, H., Tang, X., Zhang, Y., Xiang, Y. and Pu, L. (2013). Application of AERMOD on near future air quality simulation under the latest national emission control policy of China: A case study on an industrial city. Journal of Environmental Sciences, 25(8), 1608–1617. doi:10.1016/S1001-0742(12)60245-9.
Marquez, L.O. and Smith, N.C. (1999). A framework for linking urban form and air quality. Environmental Modeling & Software, 14(6), 541–548. doi:10.1016/S1364-8152(99)00018-3.
Martins, H. (2012). Urban compaction or dispersion? An air quality modeling study. Atmospheric Environment, 54, 60–72. doi:10.1016/j.atmosenv.2012.02.075.
Miller, T.L. and Clagget, M. (1978). A Comparison of Three Highway Line Source Dispersion Models. Atmos. Env., 12, 1323-1329.
Mokhtar, M.M., Hassim, M.H. and Taib, R.M. (2014). Health risk assessment of emissions from a coal-fired power plant using AERMOD modeling. Process Safety and Environmental Protection, 92, 476–485.
Ozkurt, N., Sari, D., Akalin, N. and Hilmioglu, B. (2013). Evaluation of the impact of SO2 and NO2 emissions on the ambient air-quality in the ??an-Bayrami?? region of northwest Turkey during 2007-2008. Science of the Total Environment, 456-457(2), 254–266. doi:10.1016/j.scitotenv.2013.03.096.
Pandey, J.S., Kumar, R. and Devotta, S. (2005). Health risks of NO2, SPM and SO2 in Delhi (India). Atmospheric Environment, 39(36), 6868–6874. doi:10.1016/j.atmosenv.2005.08.004.
Patankar, A.M. and Trivedi, P.L. (2011). Monetary burden of health impacts of air pollution in Mumbai, India: implications for public health policy. Public health, 125(3), 157–64. doi:10.1016/j.puhe.2010.11.009.
Petersen, W. (1980). A Highway Air Pollution Model, User's guide for HIWAY2, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, EPA-600/8-80-018, 69 p.
Rao, S., Pachauri, S., Dentener, F., Kinney, P., Klimont, Z., Riahi, K. and Schoepp, W. (2013). Better air for better health: Forging synergies in policies for energy access, climate change and air pollution. Global Environmental Change, 23(5), 1122–1130. doi:10.1016/j.gloenvcha.2013.05.003.
Ritter, M., Müller, M.D., Tsai, M.Y. and Parlow, E. (2013). Air pollution modeling over very complex terrain: An evaluation of WRF-Chem over Switzerland for two 1-year periods. Atmospheric Research, 132-133, 209–222. doi:10.1016/j.atmosres.2013.05.021.
Sellier, Y., Galineau, J., Hulin, A., Caini, F., Marquis, N., Navel, V., et al. (2014). Health effects of ambient air pollution: do different methods for estimating exposure lead to different results? Environment international, 66, 165–73. doi:10.1016/j.envint.2014.02.001.
Sivacoumar, R. and Thanasekaran, K. (1999). Line source model for vehicular pollution prediction near roadways and model evaluation through statistical analysis. Environ. Poll., 104, 389–395. doi:10.1016/S0269-7491(98)00190-0.
Sonawane, N.V., Patil, R.S. and Sethi, V. (2012). Health benefit modeling and optimization of vehicular pollution control strategies. Atmos. Environ. 60, 193–201. doi:10.1016/j.atmosenv.2012.06.060.
Spickett, J., Katscherian, D. and Harris, P. (2013). The role of Health Impact Assessment in the setting of air quality standards : An Australian perspective. Environmental Impact Assessment Review, 43, 97–103. doi:10.1016/j.eiar.2013.06.001.
Srivastava, A. and Kumar, R. (2002). Economic valuation of health impacts of air pollution in mumbai. Environmental monitoring and assessment, 75, 135–143.
Singh, N.P. and Gokhale, S. (2015). A method to estimate spatiotemporal air quality in an urban traffic corridor. Sci. of the Tot. Env., 538, 458–467.
Syrakov, D., Prodanova, M., Georgieva, E., Etropolska, I. and Slavov, K. (2015). Simulation of European air quality by WRF–CMAQ models using AQMEII-2 infrastructure. Journal of Computational and Applied Mathematics. doi:10.1016/j.cam.2015.01.032.
Thaker, P. and Gokhale, S. (2015). The impact of traffic- fl ow patterns on air quality in urban street canyons. Environmental Pollution, in press.
Whitworth, K.W., Symanski, E., Lai, D. and Coker, A.L. (2011). Kriged and modeled ambient air levels of benzene in an urban environment : an exposure assessment study. Environmental Health, 10(1), 21. doi:10.1186/1476-069X-10-21.
Yan, F., Winijkul, E., Jung, S., Bond, T.C. and Streets, D.G. (2011). Global emission projections of particulate matter (PM): I. Exhaust emissions from on-road vehicles. Atmos. Environ. 45, 4830–4844. doi:10.1016/j.atmosenv.2011.06.018.
Zhang, H., Chen, G., Hu, J., Chen, S., Wiedinmyer, C., Kleeman, M. and Ying, Q. (2014). Evaluation of a seven-year air quality simulation using the Weather Research and Forecasting (WRF)/ Community Multiscale Air Quality (CMAQ) models in the eastern United States, Science of the Total Environment 474, 275–285.