Ali, I., Asim, M. and Khan, T.A. (2012). Low cost adsorbents for the removal of organic pollutants from wastewater. J. Environ. Manage., 113: 170-183.
Demirel, B., Yenigun, O. and Onay, T.T. (2005). Anaerobic treatment of dairy wastewaters: a review. Process Biochem., 40: 2583-2595.
Doğan, M., Alkan, M. and Onganer, Y. (2000). Adsorption of methylene blue from aqueous solution onto perlite. Water. Air. Soil Pollut., 120: 229-248.
Drogui, P., Asselin, M., Brar, S.K., Benmoussa, H. and Blais, J.F. (2008). Electrochemical removal of pollutants from agro-industry wastewaters. Sep. Purif. Technol., 61: 301-310.
Gavala, H.N., Kopsinis, H., Skiadas, I.V., Stamatelatou, K. and Lyberatos, G. (1999). Treatment of dairy wastewater using an upflow anaerobic sludge blanket reactor. J. Agric. Eng. Res., 73: 59-63.
Geetha Devi, M., Dumaran, J.J. and Feroz, S. (2012). Dairy wastewater treatment using low molecular weight crab shell chitosan. J. Inst. Eng. Ser. E, 93; 9-14.
Hameed, B.H. (2009). Spent tea leaves: A new non-conventional and low-cost adsorbent for removal of basic dye from aqueous solutions. J. Hazard. Mater., 161: 753-759.
Hummers J.W.S. and Offeman, R.E. (1958). Preparation of graphitic oxide. J. Am. Chem. Soc., 80: 1339.
Karale, S.S. and Suryavanshi, M.M. (2014). Dairy wastewater treatment using coconut shell activated carbon & laterite as low cost adsorbents. Int. J. Civil, Struct. Environ. Infrastruct. Eng. Res. Dev., 1: 9-14.
Khosroshahi, M.E. and Ghazanfari, L. (2012). Synthesis and functionalization of SiO2 coated Fe3O4 nanoparticles with amine groups based on self-assembly. Mater. Sci. Eng. C, 32: 1043-1049.
Kurniawan, A., Sutiono, H., Indraswati, N. and Ismadji, S. (2012). Removal of basic dyes in binary system by adsorption using rarasaponin-bentonite: Revisited of extended Langmuir model. Chem. Eng. J., 189-190: 264-274.
Kushwaha, J.P., Srivastava, V.C. and Mall, I.D. (2011). An overview of various technologies for the treatment of dairy wastewaters. Crit. Rev. Food Sci. Nutr., 51: 442-452.
Kushwaha, J.P., Srivastava, V.C. and Mall, I.D. (2010). Treatment of dairy wastewater by commercial activated carbon and bagasse fly ash: Parametric, kinetic and equilibrium modelling, disposal studies. Bioresour. Technol., 101: 3474-3483.
Loures, C.C.A., Filho, H.J.I., Samanamud, G.R.L., Souza, A.L., Salazar, R.F.S., Peixoto, A.L.C. and Guimarães, O.L.C. (2013). Performance evaluation of photo-fenton and fenton processses for dairy effluent treatment. Int. Rev. Chem. Eng., 5: 280.
Luo, J., Ding, L., Qi, B., Jaffrin, M.Y. and Wan, Y. (2011). A two-stage ultrafiltration and nanofiltration process for recycling dairy wastewater. Bioresour. Technol., 102: 7437-7442.
Mañas, A., Biscans, B. and Spérandio, M. (2011). Biologically induced phosphorus precipitation in aerobic granular sludge process. Water Res., 45: 3776-3786.
Manu, K.J., Mohana, V.S. and Ganeshaiah, K.N. (2011). Effluent generation by the dairy units: Characterization and amelioration for irrigation. Int J Res Chem Env., 1: 173-182.
Mitra, T., Singha, B., Bar, N. and Das, S.K. (2014). Removal of Pb(II) ions from aqueous solution using water hyacinth root by fixed-bed column and ANN modeling. J. Hazard. Mater., 273: 94-103.
Moharramzadeh, S. and Baghdadi, M. (2016). In situ sludge magnetic impregnation (ISSMI) as an efficient technology for enhancement of sludge sedimentation: Removal of methylene blue using nitric acid treated graphene oxide as a test process. J. Environ. Chem. Eng., 4: 2090-2102.
Moradi, O. and Maleki, M.S. (2013). Removal of COD from dairy wastewater by MWCNTs: adsorption isotherm modeling. Fullerenes, Nanotub. Carbon Nanostructures, 21: 836-848.
Murali, K., Karuppiah, P.L., Nithish, M., Kumar, S.S. and Raja, V.S. (2013). COD reduction using low cost biosorbent as part of cleaner production. Int. J. Sci. Res. Publ., 3: 1-3.
Omidinia, E., Shadjou, N. and Hasanzadeh, M. (2013). (Fe3O4)-graphene oxide as a novel magnetic nanomaterial for non-enzymatic determination of phenylalanine. Mater. Sci. Eng. C, 33: 4624-4632.
Porwal, H.J., Mane, A.V. and Velhal, S.G. (2015). Biodegradation of dairy effluent by using microbial isolates obtained from activated sludge. Water Resour. Ind., 9: 1-15.
Rahimi, Y., Torabian, A., Mehrdadi, N., Habibi-Rezaie, M., Pezeshk, H. and Nabi-Bidhendi, G.R. (2011). Optimizing aeration rates for minimizing membrane fouling and its effect on sludge characteristics in a moving bed membrane bioreactor. J. Hazard. Mater., 186: 1097-1102.
Särkkä, H., Vepsäläinen, M. and Sillanpää, M. (2015). Natural organic matter (NOM) removal by electrochemical methods- A review. J. Electroanal. Chem., 755: 100-108.
Tawfik, A., Sobhey, M. and Badawy, M. (2008). Treatment of a combined dairy and domestic wastewater in an up-flow anaerobic sludge blanket (UASB) reactor followed by activated sludge (AS system). Desalination, 227: 167-177.
Weber, W.J. and Morris, J.C. (1963). Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div., 89: 31-60.
Yavuz, Y., Öcal, E., Koparal, A.S. and Öğütveren, Ü.B. (2011). Treatment of dairy industry wastewater by EC and EF processes using hybrid Fe-Al plate electrodes. J. Chem. Technol. Biotechnol., 86: 964-969.
Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R. and Ruoff, R.S. (2010). Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater., 22: 3906-24.
Zong, P., Wang, S., Zhao, Y., Wang, H., Pan, H. and He, C. (2013). Synthesis and application of magnetic graphene/iron oxides composite for the removal of U(VI) from aqueous solutions. Chem. Eng. J., 220: 45-52.