A Comparative Study of Air Pollution Tolerance Index (APTI) of Some Fruit Plant Species Growing in the Industrial Area of Sfax, Tunisia

Document Type : Original Research Paper

Authors

1 Laboratory of Improvement of Olive Productivity and Product Quality, Olive Tree Institute, Sfax, Tunisia Laboratory of Botany and Cryptogamy, Faculty of Pharmacy, Limoges, University of Limoges, France

2 Laboratory of Environment Engineering and Ecotechnology, High Institute of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia

3 Laboratory of Plant Biodiversity and Dynamics of Ecosystems in Arid Area, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia

4 Laboratory of Botany and Cryptogamy, Faculty of Pharmacy, Limoges, University of Limoges, France

5 Laboratory of Improvement of Olive Productivity and Product Quality, Olive Tree Institute, Sfax, Tunisia

Abstract

Air Pollution Tolerance Index (APTI) is an important tool to screen out plants, based on their tolerance or sensitivity level to different air pollutants. The present study has been conducted to evaluate APTI of four different plant species around polluted and unpolluted industrial site in Sfax, Tunisia. In order to determine the susceptibility level of the selected plant species, it has used four physiological and biochemical parameters like leaf relative water content, ascorbic acid content, chlorophyll content, and leaf pH to compute the APTI values. The results of the study reveal that among the four studied plant species, Olea europaea (APTI = 20.09) and Phoenix dactylifera (APTI = 17.10) are the most tolerant species, whereas Ficus carica (APTI = 8.87) and Morus alba (APTI = 7.49) are the most sensitive ones. The present study suggests that the most tolerant species, i.e., olive and date palm, can be planted in polluted sites for both air pollution abatement and aesthetic improvement. While, the sensitive species, namely common figand white Mulberry, help indicating air pollution and should be utilized as bio-indicators.

Keywords


Abbaslou, H. and Bakhtiari, S. (2017). Phytoremediation potential of heavy metals by two native pasture plants (Eucalyptus grandis and ailanthus altissima) assisted with AMF and fibrous minerals in contaminated mining regions. Pollution, 3(3), 471-486.
Achakzai, K. Khalid, S., Adrees, M., Bibi, A., Ali, S., Nawaz, R., and Rizwan, M. (2017). Air pollution tolerance index of plants around brick kilns in Rawalpindi. Pakistan. J. Environ. Manage., 190, 252-258.
Ali, B., Xu, X., Gill, R. A., Yang, S., Ali, S., Tahir, M. and Zhou, W. (2014). Promotive role of 5-aminolevulinic acid on mineral nutrients and antioxidative defense system under lead toxicity in Brassica napus. Ind. Crops. Prod., 52, 617-626.
Bakiyaraj, R. and Ayyappan, D. (2014). Air pollution tolerance index of some terrestrial plants around an industrial area. Int. J. mod. res. rev., 2(1), 1-7.
Ben Abdallah, F. and Boukhris, M. (1990). Action des polluants atmosphériques sur la région de Sfax (Tunisie). Pollution Atmosphérique, 127, 292-297.
Elloumi, N., Ben Abdallah, F. and Boukhris, M. (2003). Lead accumulation by some plant species cultivated in the vicinity of a lead factory in Sfax. Pollution atmosphérique, 178; 285-293.
Elloumi, N., Zouari, M., Mezghani, I., Abdallah, F. B., Woodward, S. and Kallel, M. (2017). Adaptive biochemical and physiological responses of Eriobotrya japonicato fluoride air pollution. Ecotoxicology, 26(7), 991-1001.
Esfahani, A. A., Amini, H., Samadi, N., Kar, S., Hoodaji, M., Shirvani, M. and Porsakhi, K. (2013). Assesment of air pollution tolerance index of higher plants suitable for green belt development in east of Esfahan city, Iran. Journal of Ornamental and Horticultural Plants, 3(2), 87-94.
Ben Abdallah, F., Belgacem, H. and Makki, B. (1994). Réponses des végétaux d'une région aride à une pollution atmosphérique double: (SO2+ composés fluorés). Pollution atmosphérique, 36(143), 117-122.
Kaur, M. and Nagpal, A. K. (2017). Evaluation of air pollution tolerance index and anticipated performance index of plants and their application in development of green space along the urban areas. Environ. Sci. Pollut. Res., 24(23), 18881-18895.
Lichtenthaler, H. K. and Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents (603rd Meeting, Liverpool). Biochem. Soc. Trans., 11(5), 591-592.
Maity, S., Mondal, I., Das, B., Mondal, A. K. and Bandyopadhyay, J. (2017). Pollution tolerance performance index for plant species using geospatial technology: evidence from Kolaghat Thermal Plant area, West Bengal, India. Spat. Inf. Res., 25(1), 57-66.
Masoudi, M., Asadifard, E., Rastegar, M. and Shirvani, A. (2017). Status and prediction of sulfur dioxide as an air pollutant in the city of Ahvaz, Iran. Pollution, 3(2), 201-211.
Mezghani, I., Boukhris, M. and Chaieb, M. (1999). Accumulation of cadmium by some cultivated vegetable species around a factory producing phosphate fertilizers in Sfax (Tunisia). Pollution atmosphérique, 163, 80-88.
Prajapati, S. K. and Tripathi, B. D. (2008). Seasonal variation of leaf dust accumulation and pigment content in plant species exposed to urban particulates pollution. J. Environ. Qual., 37(3), 865-870.
Qadir, S. U. and Siddiqui, W. A. (2014). Effect of fly ash on some biochemical parameters of selected plants growing at dumping site of badarpur thermal power plant in delhi. Int. J. Res. Appl. Nat. Soc. Sci., 2, 7-14.
Rai, P. K. and Panda, L. L. (2014). Dust capturing potential and air pollution tolerance index (APTI) of some road side tree vegetation in Aizawl, Mizoram, India: an Indo-Burma hot spot region. Air Quality, Atmosphere, and Health, 7(1), 93-101.
Seyyednejad, S. M., Motamedi, H. and Lordifard, P. (2017). Biochemical changes of Conocarpus erectus (combretaceae) in response to gas refinery air pollution as an air pollution indicator. Pollution, 3(2), 185-190.
Noor, M. J., Sultana, S., Fatima, S., Ahmad, M., Zafar, M., Sarfraz, M. and Ashraf, M.A. (2017). Retraction note to: estimation of anticipated performance index and air pollution tolerance index and of vegetation around the marble industrial areas of Potwar region: bioindicators of plant pollution response. Environmental geochemistry and health, 39(3), 705-705.
Singh, S. K., Rao, D. N., Agrawal, M., Pandey, J. and Narayan, D. (1991). Air pollution tolerance index of plant. J. Environ. Mgmt., 32, 45-55.
Wickramasinghe, W. A. D., Mubiana, V. K. and Blust, R. (2017). The effects of heavy metal concentration on bio-accumulation, productivity and pigment content of two species of marine macro algae. Sri Lanka Journal of Aquatic Sciences, 22(1), 1-8.
Zhang, P. Q., Liu, Y. J., Chen, X., Yang, Z., Zhu, M. H. and Li, Y. P. (2016). Pollution resistance assessment of existing landscape plants on Beijing streets based on air pollution tolerance index method. Ecotoxicol. Environ. Saf., 132, 212-223.