Effects of Cadmium and Dimethoate on Some Biological and Biochemical Indices in Freshwater Green Algae, Spirogyra sp.

Document Type : Original Research Paper

Authors

1 Department of Aquaculture, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, P.O.Box 47189-63616, Iran,

2 Department of Environment, Faculty of Natural Resources and Environment, Behbahan Khatam Alanbia University of Technology, P.O.Box 47189-63616, Iran

Abstract

The present study investigates the influence of an organophosphorus pesticide, namely Dimethoate, and cadmium on biomarkers of the green alga, Spirogyra sp., in a 14-day experiment. For so doing, it has exposed Spirogyra sp. to 0.0, 100, 200, and 400 mg L-1 of Dimethoate and/or 1 mg L-1 of cadmium chloride (CdCl2) to observe a reduction in chlorophyll a and b level in Spirogyra sp., exposed to 200 and 400 mg L-1 of Dimethoate as well as algae treated with cadmium alone or in combination with Dimethoate. Levels of malondialdehyde (MDA) and total antioxidant in cells, as well as the activity of ascorbate peroxidase (APX) soar in Spirogyra sp., exposed to Dimethoate and/or cadmium (alone or simultaneously). Also Spirogyra’sexposure to cadmium and/or Dimethoate significantly increases catalase (CAT) activity. However, levels of carotenoids in Spirogyra sp., treated with both cadmium and Dimethoate, decline significantly, with no significant change found in catalase activity of Spirogyra sp., exposed to 100 and 200 mg L-1 of Dimethoate, in comparison to the control group. However, CAT activity rises significantly in Spirogyra sp., treated with 400 mg L-1 of Dimethoate. Cadmium can cause cytotoxicity in 1 mg L-1 concentration of the green algae(Spirogyra sp.). On the whole, investigating the biological and biochemical markers in Spirogyra sp., exposed to different concentrations of Dimethoate, has revealed some concentration-dependent toxicity. Furthermore, Dimethoate can synergistically increase toxicity and bioavailability of cadmium in Spirogyra sp.

Keywords


Almeida, A. C., Gomes, T., Langford, K., Thomas, K. V. and Tollefsen, K. E. (2017). Oxidative stress in the algae Chlamydomonas reinhardtii exposed to biocides. Aquat. Toxicol., 189, 50-59. doi: 10.1016/j.aquatox.2017.05.014.
Amorim, M. J., Pereira, C., Menezes-Oliveira, V. B., Campos, B., Soares, A. M.and Loureiro, S. (2012). Assessing single and joint effects of chemicals on the survival and reproduction of Folsomia candida (Collembola) in soil. Environ. Pollut., 160(1), 145-52. doi: 10.1016/j.envpol.2011.09.005.
Bajguz, A. (2010). An enhancing effect of exogenous brassinolide on the growth and antioxidant activity in Chlorella vulgaris cultures under heavy metals stress. Environ. Exp. Bot., 68, 175-179. doi: 10.1016/j.envexpbot.2009.11.003.
Banaee, M., Beitsayah, A. and Jorabdoz, I. (2015a). Assessment of Mercury Bioaccumulation in Zebra Cichlid (Cichlasoma Nigrofasciatum) Exposed to Sublethal Concentrations of Permethrin. Iranian. J. Toxicol., 8(27), 1168-1173.
Banaee, M., Mohammadipour, S. and Madhani, S. (2015b). Effects of sublethal concentrations of permethrin on bioaccumulation of cadmium in zebra cichlid (Cichlasoma nigrofasciatum). Toxicol. Environ. Chem., 97(2), 200-207. doi: 10.1080/02772248.2015.1031668
Chen, S., Chen, M., Wang, Z., Qiu, W., Wang, J., Shen, Y., Wang, Y. and Ge, S. (2016). Toxicological effects of chlorpyrifos on growth, enzyme activity and chlorophyll a synthesis of freshwater microalgae. Environ. Toxicol. Phar., 45, 179-86. doi: 10.1016/j.etap.2016.05.032.
Chen, Z., Juneau, P. and Qiu, B. (2007). Effects of three pesticides on the growth, photosynthesis and photoinhibition of the edible cyanobacterium Ge-Xian-Mi (Nostoc). Aquat. Toxicol., 81(3), 256-265. doi: 10.1016/j.aquatox.2006.12.008.
Chu, S. P. (1942). The influence of the mineral composition of the medium on the growth of planktonic algae. Part I, Methods and culture media. J. Ecol., 30, 284-325.
Das, P., Samantaray, S. and Rout, G. R. (1997). Studies on cadmium toxicity in plants: A review. Environ. Pollut., 98(1), 29-36. doi: 10.1016/S0269-7491(97)00110-3.
De Tullio, M. C., Guether, M. and Balestrini, R. (2013). Ascorbate oxidase is the potential conductor of a symphony of signaling pathways. Plant. Signal. Behav., 8(3), e23213. doi: 10.4161/psb.23213.
Dogan, D. and Can, C. (2011). Hematological, biochemical, and behavioral responses of Oncorhynchus mykiss to dimethoate. Fish. Physiol. Biochem., 37(4), 951-958. doi: 10.1007/s10695-011-9492-1.
Elavarthi, S. and Martin, B. (2010). Spectrophotometric Assays for Antioxidant Enzymes in Plants. In R. Sunkar, Plant Stress Tolerance, Methods in Molecular Biology 639 (Vol. 639, pp. 273-280. doi: 10.1007/978-1-60761-702-0_16). Humana Press, Springer.
Farias, D. R., Hurd, C. L., Eriksen, R. S. and Macleod, C. K. (2018). Macrophytes as bioindicators of heavy metal pollution in estuarine and coastal environments. Mar. Pollut. Bull., 128, 175-184. doi: 10.1016/j.marpolbul.2018.01.023.
Fazilat, N., Vazirzadeh, A., Banaee, M. and Farhadi, A. (2017). Separate and combined effects of Dimethoate pesticide and bio-fertilizer on the activity of enzymes involved in anaerobic pathway, neurotransmission and protein metabolism in common carp, Cyprinus carpio (Teleostei: Cyprinidae). Iranian. J. Ichthyol., 4(4), 352-360. doi: 10.22034/iji.v4i4.241.
Góth, L. A. (1991). Simple method for determination of serum catalase and revision of reference range. Clin. Chim. Acta., 196, 143-152.
Hasan, S. A., Fariduddin, Q., Ali, B., Hayat, S. and Ahmad, A. (2009). Cadmium: toxicity and tolerance in plants. J. Environ. Biol., 30(2), 165-175.
Kumari, N., Narayan, O. P. and Rai, L. C. (2009). Understanding butachlor toxicity in Aulosira fertilissima using physiological, biochemical and proteomic approaches. Chemosphere., 77(11), 1501-1507. doi: 10.1016/j.chemosphere.2009.10.005.
Lichtenthaler, H. K. and Buschmann, C. (2001). Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. In R. E. Wrolstad, T. E. Acree, H. An, E. A. Decker, M. H. Penner, D. S. Reid, . . . P. Sporns, Current Protocols in Food Analytical Chemistry (CPFA) (pp. F4.3.1-F4.3.8). New York: John Wiley and Sons.[WU1] 
Mane, P. C. and Bhosle, A. B. (2012). Bioremoval of Some Metals by Living Algae Spirogyra sp. and Spirullina sp. from aqueous solution. Int. J. Environ. Res., 6(2), 571-576.
Miazek, K. and Ledakowicz, S. (2013). Chlorphyll from leaves, needles and microalgae: A kinetic approach. Int. J. Agr. Biol. Eng., 6(2), 107-115.
Nematdoost Haghi, B. and Banaee, M. (2017). Effects of micro-plastic particles on paraquat toxicity to common carp (Cyprinus carpio): biochemical changes . Int. J. Environ. Sci. Technol., 14(3), 521-530. doi: 10.1007/s13762-016-1171-4.
Pan, C. G., Peng, F. J., Shi, W. J., Hu, L. X., Wei, X. D. and Ying, G. G. (2017). Triclosan-induced transcriptional and biochemical alterations in the freshwater green algae Chlamydomonas reinhardtii. Ecotox. Environ. Safe., 148, 393-401. doi: 10.1016/j.ecoenv.2017.10.011.
Pandey, J. K., Dubey, G. and Gopal, R. (2015). Study the effect of insecticide dimethoate on photosynthetic pigments and photosynthetic activity of pigeon pea: Laser-induced chlorophyll fluorescence spectroscopy. J. Photochem. Photobiol. B: Biol., 151, 297-305. doi: 10.1016/j.jphotobiol.2014.08.014.
Piotrowska-Niczyporuk, A., Bajguz, A., Zambrzycka, E. and Godlewska-Żyłkiewicz, B. (2012). Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant. Physiol. Biochem., 52, 52-65. doi: 10.1016/j.plaphy.2011.11.009.
Placer, Z., Cushman, L. and Johnson, B. (1996). Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal. Biochem., 16(2), 359-364.
Prieto, P., Pineda, M. and Aguilar, M. M. (1999). Spectrophotometric quantification of antioxidant capacity through the formation of a Phosphomolybdenum complex; specific application to the determination of vitamin E. Anal. Biochem., 269, 337-341.
Qiu, Y. W., Zeng, E. Y., Qiu, H., Yu, K. and Cai, S. (2017). Bioconcentration of polybrominated diphenyl ethers and organochlorine pesticides in algae is an important contaminant route to higher trophic levels. Sci. Total. Environ., 579, 1885-1893. doi: 10.1016/j.scitotenv.2016.11.192.
Ramadass, K., Megharaj, M., Venkateswarlu, K. and Naidu, R. (2017). Toxicity of diesel water accommodated fraction toward microalgae, Pseudokirchneriella subcapitata and Chlorella sp. MM3. Ecotox. Environ. Safe., 142, 538-543. doi: 10.1016/j.ecoenv.2017.04.052.
Samadani, M., Perreault, F., Oukarroum, A. and Dewez, D. (2018). Effect of cadmium accumulation on green algae Chlamydomonas reinhardtii and acid-tolerant Chlamydomonas CPCC 121. Chemosphere., 191, 174-182. doi: 10.1016/j.chemosphere.2017.10.017.
Shamshad, I., Khan, S., Waqas, M., Ahmad, N., Khushnood-Ur, R. and Khan, K. (2015). Removal and bioaccumulation of heavy metals from aqueous solutions using freshwater algae. Water. Sci. Technol., 71(1), 38-44. doi: 10.2166/wst.2014.458.
Wang, L., Kang, Y., Liang, S., Chen, D., Zhang, Q., Zeng, L., Luo, J.M. and Jiang, F. (2018). Synergistic effect of co-exposure to cadmium (II) and 4-n-nonylphenol on growth inhibition and oxidative stress of Chlorella sorokiniana. Ecotoxicol. Environ. Saf., 154, 145-153. doi: 10.1016/j.ecoenv.2018.02.039.
Wang, S., Zhang, D. and Pan, X. (2012). Effects of arsenic on growth and photosystem II (PSII) activity of Microcystis aeruginosa. Ecotox. Environ. Safe., 84, 104-111. doi:10.1016/j.ecoenv.2012.06.028.
Wee, S. Y. and Aris, A. Z. (2017). Ecological risk estimation of organophosphorus pesticides in riverine ecosystems. Chemosphere., 188, 575-581. doi:10.1016/j.chemosphere.2017.09.035.
Zhang, A., Xu, T., Zou, H. and Pang, Q. (2015). Comparative proteomic analysis provides insight into cadmium stress responses in brown algae Sargassum fusiforme. Aquat. Toxicol., 163, 1-15. doi: 10.1016/j.aquatox.2015.03.018.
Zhang, W., Zhang, M., Lin, K., Sun, W., Xiong, B., Guo, M., Cui, X. and Fu, R. (2012). Eco-toxicological effect of carbamazepine on Scenedesmus obliquus and Chlorella pyrenoidosa. Environ. Toxicol. Phar., 33(2), 344-52. doi: 10.1016/j.etap.2011.12.024.