
Pollution, 4(4): 745-758, Autumn 2018 

DOI: 10.22059/poll.2018.253350.410 

Print ISSN: 2383-451X      Online ISSN: 2383-4501 

Web Page: https://jpoll.ut.ac.ir, Email: jpoll@ut.ac.ir  

745 

Analytical Solutions of One-dimensional Advection Equation with 

Dispersion Coefficient as Function of Space in a Semi-infinite 

Porous Media 

Yadav, R. R.
*
 and Kumar, L. K.

 

Department of Mathematics & Astronomy, Lucknow University, Lucknow-

226007, U.P, India 

Received: 24.02.2018   Accepted: 27.05.2018 

ABSTRACT: The aim of this study is to develop analytical solutions for one-
dimensional advection-dispersion equation in a semi-infinite heterogeneous porous 
medium. The geological formation is initially not solute free. The nature of pollutants and 
porous medium are considered non-reactive. Dispersion coefficient is considered squarely 
proportional to the seepage velocity where as seepage velocity is considered linearly 
spatially dependent. Varying type input condition for multiple point sources of arbitrary 
time-dependent emission rate pattern is considered at origin. Concentration gradient is 
considered zero at infinity. A new space variable is introduced by a transformation to 
reduce the variable coefficients of the advection-dispersion equation into constant 
coefficients. Laplace Transform Technique is applied to obtain the analytical solutions of 
governing transport equation. Obtain results are shown graphically for various parameter 
and value on the dispersion coefficient and seepage velocity. The developed analytical 
solutions may help as a useful tool for evaluating the aquifer concentration at any position 
and time. 

Keywords: Advection, Dispersion, Unit step function, Point Source, Heterogeneous 
medium. 

 
 
 
INTRODUCTION


 

Advection dispersion equation (ADE) is 

broadly used as governing equation to 

predict the transport phenomena in aquifer 

and groundwater (Bear, 1972). In order to 

deal aquifer contamination, it is necessary 

to infer the mechanism of mass transport in 

porous media. A large number of 

literatures are present to investigate solute 

transport in porous media. Most of the 

researchers have focused the solute 

transport distribution with point source 

pollutant in aquifer either in heterogeneous 

or homogeneous medium. Ogata and 

Banks (1961) obtained analytical solution 
                                                           
* Corresponding Author, Email: yadav_rr2@yahoo.co.in 

to one-dimensional longitudinal transport 

while Harleman and Rumer (1963) derived 

for transverse spreading in the one-

dimensional porous domain. Rumer (1962) 

obtained analytical solution, assuming 

dispersion coefficient directly related to 

flow velocity. Wierenga (1977) observed 

that variations (fluctuation) in velocity 

don't affect longitudinal dispersion in one-

dimensional solute transport. DeSmedt and 

Wierenga (1978) observed that seepage 

flow under steady-state conditions in any 

geological formation always are temporally 

depends. Sauty (1980), Pickens and Grisak 

(1981) evoked that dispersion in geological 

formation is scale dependent. Sudicky and 
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Cherry (1979) demonstrate that the 

dispersion enhance with distance from the 

solute source. Flury et al. (1998) obtained 

the analytical solution of the one-

dimensional advection-dispersion equation 

with depth-dependent adsorption 

coefficients. Huang et al. (1996) obtained 

an analytical solution to conservative 

solute transport in heterogeneous porous 

media assuming dispersivity increases 

linearly with distance up to some distance 

after that it achieve asymptotic  value.  

Volocchi (1989) studied solute transport 

where sorption reactions directly related to 

an arbitrary function in upward direction. 

Guerrero et al. (2009) provided an exact 

solution of the advection-dispersion equation 

with constant coefficients using generalized 

integral Laplace transform technique. Chen 

et al. (2003) used a Laplace-transformed 

power series technique to solve a two-

dimensional advection-dispersion equation in 

cylindrical coordinates and compared the 

solution with a numerical solution. Chen et 

al. (2008) obtained an analytical solution 

with an asymptotic hyperbolic dispersion 

coefficient. Singh et al. (2013) derived an 

analytical solution of the two-dimensional 

solute transport in a homogeneous porous 

medium using the Hankel transforms 

technique. Pang and Hunt (2001) obtained 

analytical solutions for advection dispersion 

equation with scale-dependent dispersion. 

Sanskrityayn et al. (2016) obtained analytical 

solution of advection dispersion equation 

with spatially and temporally dependent 

dispersion using Green’s function while 

Longitudinal solute transport from a pulse 

type source along temporally and spatially 

dependent flow was discussed by Yadav et 

at. (2012). Kumar and Yadav (2015) 

obtained analytical solution of one-

dimensional solute transport for uniform and 

varying pulse type input point source through 

heterogeneous porous medium. Das et al. 

(2017) presents mathematical modeling of 

groundwater contamination with varying 

velocity field while Moghaddam et al. (2017) 

developed a numerical model for one 

dimensional solute transport in rivers. 

Aral and Liao (1996) obtained analytical 

solutions of the two-dimensional advection-

dispersion equation with time-dependent 

dispersion coefficient. Massabo et al. (2006) 

developed analytical solutions for two-

dimensional advection-dispersion equation 

with anisotropic dispersion. In the 

subsurface, flow and transport processes are 

mainly depending on spatial heterogeneity 

and temporal variability which occurs due 

to seasonal and variations in water levels 

(Elfeki et al., 2011).  

The above literature review shows that 

the majority of the analytical solutions were 

mainly related to hypothesis in one and two 

dimensional ground-water flow in aquifers 

with common assumptions like constant 

porosity, steady and unsteady pore-water 

velocity with or without retardation factor. 

Almost all analytical solutions to any 

physical problem of subsurface involve 

complex boundary conditions to find the 

corresponding analytical solutions. Due to 

heterogeneity plumes moves at different 

rates because it generates variability in the 

fluid velocity. Most of the 

analytical/numerical solutions derived by 

pervious workers considered a point source 

of constant nature or time dependent.  

The main focus of this paper is to derive 

a new mathematical model to investigating 

contaminant transport in an aquifer 

considering especially variable flow field. 

Deviating from previous studies, a multiple 

point source is considered to assess the 

impact of concentration level in 

groundwater contamination problems. The 

input condition is introduced at the origin of 

the domain and second condition is 

considered at the end of the domain. A new 

space variable is introduced by a 

transformation. It helps to reduce the 

variable coefficients of advection dispersion 

equation into constant coefficients. Laplace 

transformation technique is used to get the 

analytical solution which is more viable and 
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simpler. The developed solutions may help 

to measure the contaminant concentration in 

an aquifer at any position and time. 

MATERIAL & METHODS 
The problem formulated mathematically as 

a multiple point source of one-dimensional 

semi-infinite geological formation which is 

initially not solute free. One-dimensional 

advection-dispersion equation (ADE) is 

used to formulate the present model which 

is mathematically written as follows: 























uC

x

C
D

xt

C
 (1) 

In which ][ML 3C  is the solute 

concentration of the pollutant, transporting 

along the flow field through the medium at 

a position  Lx  and time [T]t . ]T[L 12 D and 

][LT 1u  are the dispersion coefficient and 

unsteady uniform pore seepage velocity 

respectively. The first term of the left hand 

side of the Eq.(1) is represents change in 

concentration with time in liquid phase. 

The first term on the right-hand side of the 

Eq.(1) describes the influence of the 

dispersion on the concentration distribution 

while the second term is the change of the 

concentration due to advective transport. 

The medium is supposed to have a uniform 

solute concentration iC before an injection 

of pollutant in the domain. The input 

condition is considered of varying type. 

The concentration gradient is assumed zero 

at right boundary.  This type phenomenon 

mathematically may be written as: 

0,0;),(  xtCtxC i  (2) 
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



xt

x

txC
,0;0

),(
 (4) 

where, 0C  is the initial concentration,  qp,  

and r  are the parameters of the quadratic 

pulse boundary conditions at 0x  , 1t  and 

2t  are the outset and terminating times of 

the source activation, respectively, where 

 ittu   is  the shifted Heaviside function, 

which is 0  for itt   and 1 for itt  . The 

geometry of the input boundary condition 

is shown in Figure (a). 

 

Fig. (a). Geometry of the input boundary condition 

Freeze and Cherry (1979) proposed that 

dispersion is directly proportional to n
th

 

power of the seepage velocity where n
th

 

power varies from 1 to 2. In the present 

case, dispersion due to heterogeneity is 

considered directly proportional to the 

square of seepage velocity where as 

seepage velocity is considered as a linear 

function of space variable. 

 xauu  10  and 

 20
2 1 xaDDuD   

(5) 

 where 0D  and 0u  are initial dispersion 

coefficient and seepage velocity respectively. 

][L-1a  be the heterogeneity parameter whose 

dimension is the inverse of that of space 

variable (Kumar et al., 2010). The various 

values of a  representing different 

heterogeneity. Heterogeneity of the porous 

medium means the transport properties like 

porosity or hydraulic conductivity is not 

uniform throughout the domain but depends 

upon the position. 
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Substituting values from Eq.(5) in 

Eq.(1), we have 

   



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

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x

C
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0  (6) 

Eqs.(2-4) may be written as: 

0,0;),(  xtCtxC i  (7) 
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 (9) 

Let us introduce a new independent 

space variable X  by a transformation 

(Kumar et al., (2010)) defined as: 

 
 xadx

dX

a

xalog
X


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
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 (10) 

Applying the transformation of Eq. (10) 

on Eqs. (6-9), we have 
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where  000 aDuU   and 00 ua . 

0,0;),(  XtCtXC i  (12) 
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Applying the Laplace transformation on 

above initial and boundary value problem, 

it reduces into an ordinary differential 

equation of second order, which comprises 

of following three equations: 

  iCCs
dX

Cd
U

dX

Cd
D  002

2

0   (15) 

where 



0

dte)t,X(CC ts

 

   
 

   

   
 

   
0;

exp
2

exp
2

exp

exp
2

exp
2

exp

3

2

2

2
2

2
2

2
2

3

1

2

1
1

1
1

2
10000


















 





X
s

ts
p

s

ts
qpt

s

ts
rqtpt

s

ts
p

s

ts
qpt

s

ts
rqtptCuCu

dX

Cd
D

 (16) 

 X
dX
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;0  (17) 

where s   is a Laplace parameter. 

Thus the general solution of ordinary 

differential equation (15) may be written as: 
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. 
Now, using boundary conditions Eq. 

(16) and (17) in general solution Eq. (18) 

to eliminate arbitrary constants 1c  and 2c , 

we get the particular solution to the above 

boundary value problem as: 
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Apply Inverse Laplace transformation on 

Eq.(19) and  using the result given by  Van 

Genuchten and Alves, (1982) and 

Abramowitz and Stegun, (1970). Using 
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back transformations Eq.(10)., the analytical 

solutions of advection-dispersion equation 

for varying  type  input point source may be 

written in terms of  txC ,   as: 
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RESULTS AND DISCUSSIONS 
The analytical solutions obtained as in Eq. 

(20), Eq.(21) and Eq. (22) are 

demonstrated with the help of input data to 

understand the solute concentration 

distribution behaviour in a finite domain 

  15meterx0  . The chosen sets of data are 

taken from the experimental and theoretical 

published literatures (Todd, 1980; Jaiswal 

et.al., 2009; Bharati et al., 2015; Singh et 

al., 2014). The domain is considered semi-

infinite but the solute concentration 

increases with position in the time domain 
day)2(0 1tt   and decreases with position 

in the time domain  )day2(1tt   in a finite 

domain at different values of time.  

To understand the concentration 

profiles, artificial data of continuous 

injection in the domain are used. 

Concentration values are evaluated from 

the Eqs. (20), (21) and Eq. (22) in a finite 

domain   15meterx0   at different values 
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of parameters such as time, dispersion 

coefficient and heterogeneous parameter. 

In this study the input parameters values 

and the ranges of these parameters in 

which they are varied taken either from 

published literature or empirical 

relationship. The concentration values 

0C/C  are evaluated assuming the reference 

concentration as 0.10 C , 10.0iC  . The 

common input values are taken as 

)(day01.0 -2p , )(day02.0 -1q , 03.0r  , 

day21 t  and day52 t  for all cases. The 

medium is supposed heterogeneous. In this 

study source contamination is considered 

multiple instead of point source 

contamination.  

Case-I: Figures (1-3) demonstrate the 

concentration behaviour in the time domain 

 day20 1  tt  for the analytical solution 

obtained in Eq. (20). 

Figure (1) illustrates the dimensionless 

concentration profiles at various time  

0.1,5.0(days) t  and 5.1  with common 

parameters (m/day)10.10 u , /day)(m18.2 2
0 D

, )(m01.0 -1a . This figure exhibits that the 

input concentration that is the concentration 

at the origin of the domain are  

054.0,040.0,033.0  at time 0.1,5.0(days) t  

and 5.1 , respectively. Concentration level at 

the source boundary is higher for smaller 

time and lower for larger time. It attenuates 

with position and time. It’s also clear that the 

rate of change in concentration on 

longitudinal direction is higher for lower 

time and attains a stationary position after a 

certain distance travelled onwards. 

 

 

Fig. 1. Dimensionless concentration distribution evaluated by analytical solution 

presented in Eq. (20) at various time for 10 tt  . 
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Fig. 2. Dimensionless concentration distribution evaluated by analytical solution presented 

in Eq. (20) at various dispersion parameter and velocity for 10 tt  . 

The contaminant concentration profile 

computed with various dispersion 

coefficient and corresponding seepage 

velocity /day)(m30.1 2
0 D , (m/day)85.00 u , 

/day)(m18.2 2
0 D ,  (m/day)10.10 u , and 

/day)(m28.3 2
0 D , (m/day)35.10 u  with 

common parameters (day)0.1t  and 

)(m010 -1.a   along longitudinal direction is 

shown in Figure (2). It is observed from 

that the input contaminant concentration on 

source boundary 0x  is 0400.  for different 

dispersion coefficients. It attenuates with 

position and time. Enhance in the 

dispersion of the effluent would cause to its 

attenuation in the geological formation. 

The concentration pattern decreases to 

time, whereas increases to space and after a 

certain distance travelled it attains a 

stationary position. 

 

Fig. 3. Dimensionless concentration distribution evaluated by analytical solution presented 

in Eq. (20) at various heterogeneous parameters in time domain 10 tt  . 



Pollution, 4(4): 745-758, Autumn 2018 

753 

Figure (3) demonstrate the 

dimensionless concentration distribution 

pattern computed at various heterogeneity 

parameters 05.0,03.0,01.0)(m-1 a  with 

common parameters (day)01.t  ,  

/day)(m18.2 2
0 D  and (m/day)10.10 u . It 

attenuates with position and time. At 

particular position the concentration level 

is lower for larger heterogeneous parameter 

and higher for the smaller heterogeneous 

parameter. The concentration pattern 

decreases with respect to heterogeneous 

parameter, whereas it increases with 

respect to the space and after a certain 

distance travelled it becomes constant for 

all time and space. 

Case-II: Figures (4-6) demonstrate the 

concentration behaviour in the time domain  

)day5()day2( 21 ttt   for the analytical 

solution obtained in Eq. (21). 

Figure (4) illustrated the dimensionless 

concentration distribution predicted by the 

present solution in Eq.(21) with  different 

time  0.4,5.3(days) t  and 5.4  computed for 

the common parameter (m/day)10.10 u , 

/day)(m18.2 2
0 D  and )(m01.0 -1a . The 

input concentration 0/CC  at the origin ( 0x ) 

are respectively 310.0,235.0,170.0  at the 

time 0.4,5.3(days) t  and 5.4 , respectively. 

It attenuates with position and time. At 

particular position the concentration level is 

lower for smaller time and higher for larger 

time. The concentration pattern decreases 

with respect to space and after a certain 

distance travelled it becomes constant for all 

time and space. 

Figure (5) represents the dimensionless 

concentration distribution predicted by the 

present solution in Eq.(21) at various 

dispersion parameter and corresponding 

seepage velocity /day)(m301 2
0 .D  , 

(m/day)8500 .u  , /day)(m182 2
0 .D  , 

(m/day)1010 .u  , and /day)(m283 2
0 .D  , 

(m/day)3510 .u   computed for the common 

parameter (day)04.t    , )(m010 -1.a  . It 

attenuates with position and time. At 

particular position the concentration level 

is lower for smaller dispersion parameter 

and higher for larger dispersion parameter. 

The concentration pattern decreases with 

respect to space and after a certain distance 

travelled it becomes constant for all time 

and space. 

 

Fig. 4. Dimensionless concentration distribution evaluated by analytical solution  

presented in Eq. (21) at various time for 21 ttt  . 
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Fig. 5. Dimensionless concentration distribution evaluated by analytical solution 

presented in Eq. (21) at various dispersion parameter and velocity for 21 ttt  . 

 

Fig. 6. Dimensionless concentration distribution evaluated by analytical solution 

presented in Eq. (21) for various heterogeneous parameter for  21 ttt  . 

Figure (6) demonstrate the 

dimensionless concentration distribution 

pattern predicted by the present solution in 

Eq.(21) at various heterogeneous  

parameter 05.0,03.0,01.0)(m-1 a , computed 

for the common parameter (day)04.t  , 

/day)(m182 2
0 .D  , (m/day)1010 .u  . It 

attenuates with position and time. At 

particular position the concentration level 

is lower for higher heterogeneous 

parameter and higher for the lower 

heterogeneous parameter. The 

concentration pattern decreases with 

respect to heterogeneous parameter and 

space but after certain distance travelled it 

becomes constant. 

Case-III: Figures (7-9) demonstrate the 

concentration distribution in the time 

domain )day5(2tt for the analytical 

solution obtained in Eq. (22). 



Pollution, 4(4): 745-758, Autumn 2018 

755 

 

Fig. 7. Dimensionless concentration distribution evaluated by analytical solution presented  

in Eq. (22) at various time for 2tt  . 

Figure (7) illustrated the dimensionless 

concentration distribution described by the 

analytical solution in Eq.(22)  at different 

time  0.7,5.6(days) t  and 5.7 computed for 

the common parameter (m/day)10.10 u , 

/day)(m18.2 2
0 D , )(m01.0 -1a . It 

attenuates with position and time. At 

particular position the concentration level 

is lower for smaller time and higher for 

larger time. The input concentration, 0C/C  

at the origin ( 0x ) are different at each 

time. The concentration pattern increases 

with respect to time and decreases with 

respect to space and after a certain distance 

travelled it becomes constant for all time 

and space. 

 

Fig. 8. Dimensionless concentration distribution evaluated by analytical solution 

presented in Eq. (22) at various dispersion parameter and velocity for 2tt  . 
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Fig. 9. Dimensionless concentration distribution evaluated by analytical solution 

presented in Eq. (22) for various heterogeneous parameter for 2tt  .  

Figure (8) illustrates the solute transport 

from the point source along the 

longitudinal direction of the medium, 

presented in Eq.(22) at various dispersion 

coefficient and seepage velocity 

/day)(m301 2
0 .D  , (m/day)8500 .u  , 

/day)(m182 2
0 .D  , (m/day)1010 .u   and 

/day)(m283 2
0 .D  , (m/day)3510 .u   at time 

(day)07.t  and  )(m010 -1.a  . It attenuates 

with position and time. At particular 

position the concentration level is lower for 

smaller dispersion parameter and higher for 

a larger dispersion parameter. The 

concentration pattern decreases with space 

and after a certain distance it attains a 

stationary position. 

Figure (9) illustrates the solute transport 

described by the solution in Eq.(22), in the 

time domain 2tt  at various heterogeneity 

parameters 05.0and,03.0,01.0)(m-1 a , 

computed at (day)07.t  , /day)(m18.2 2
0 D , 

(m/day)10.10 u . It attenuates with position 

and time. At particular position the 

concentration level is lower for larger 

heterogeneous parameter and higher for the 

smaller heterogeneous parameter. The 

concentration pattern decreases with 

respect to heterogeneous parameter and 

space, but after a certain distance travelled 

it becomes constant. 

CONCLUSIONS 
In this study, we studied analytical 

solutions to one-dimensional advection 

dispersion equation for conservative solute 

transport with several point source 

boundary conditions. The geological 

formation of the domain is considered 

semi-infinite and heterogeneous in nature. 

The dispersion coefficient is assumed to 

vary as a square function of distance. The 

solutions are obtained by using the Laplace 

transform technique. In Laplace 

transformation technique the solution is 

obtained by transforming the advection 

dispersion equation into an ordinary 

differential equation with help of certain 

other transformation. The solutions to all 

possible combinations of spatially 

dependence are demonstrated with the help 

of graphs. The developed analytical 

solutions may help as a useful tool for 

evaluating the aquifer concentration at any 

position and time. Such solutions are useful 

in validating a numerical solution to a 
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dispersion problem. Derived solution can 

be extended for any time-dependent 

boundary conditions. The analytical model 

presented here provides better information 

about various physical transport 

parameters. 
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