Al-Niami, A. N. S. and Rushton, K. R. (1977). Analysis of flow against dispersion in porous media. J. Hydrol., 33; 87-97.
Aral, M. M. and Liao, B. (1996). Analytical solutions for two-dimensional transport equation with time-dependent dispersion coefficients. J. Hydrol. Eng, 1(1); 20-32.
Banks, R. B. and Ali, J. (1964). Dispersion and adsorption in porous media flow. J. Hydrol. Div., 90; 13-31.
Bing, B., Huawei, L., Tao, X. and Xingxin, C. (2015). Analytical solutions for contaminant transport in a semi-infinite porous medium using the source function method. Comp. and Geotech.,
69; 114-123.
Carnahan, C. L. and Remer, J. S. (1984). Non-equilibrium and equilibrium sorption with a linear sorption isotherm during mass transport through porous medium: Some analytical solutions. J. Hydrology (Amsterdam, Neth), 73; 227-258.
Chen, J. S. and Liu, C. W. (2011). Generalized analytical solution for advection-dispersion equation in finite spatial domain with arbitrary time-dependent inlet boundary condition. Hydrol. Earth Sys. Sci., 15; 2471-2479.
Chen, J. S., Liu, C. W., Hsu, H. T. and Liao, C. M. (2003). A Laplace transformed power series solution for solute transport in convergent flow field with scale-dependent dispersion. Water Resou. Res., 39(8); 14-1–14-10.
Chen, J. S., Ni, C. F. and Liang, C. P. (2008). Analytical power series solution to the two-dimensional advection-dispersion equation with distance-dependent dispersivity. Hydrol. Process., 22(24); 4670-4678.
Crank, J. (1975). The Mathematics of Diffusion. Oxford Univ. Press London, 2nd ed.
Das, P., Akhter, A. And Singh, M. K. (2018). Solute transport modelling with the variable temporally dependent Boundary. Sådhanå; 43:12
Djordjevich, A. and Savovic, S. (2017). Finite difference solution of two-dimensional solute transport with periodic flow in homogeneous porous media. J. Hydrol. and Hydromech., 65(4); 426-432.
Hunt, B. (1998). Contaminant source solutions with scale-dependent dispersivities. J. Hydrol. Eng., 3(4); 268-275.
Jaiswal, D. K., Kumar, A., Kumar, N. and Singh, M. K. (2011). Solute Transport along Temporally and Spatially Dependent Flows through Horizontal Semi-Infinite Media: Dispersion Proportional to Square of Velocity. J. Hydrol. Eng, 16(3); 228-238.
Kumar, A. and Yadav, R. R. (2015). One-dimensional solute transport for uniform and varying pulse type input point source through heterogeneous medium. Environ. Tech., 36(4); 487-495.
Kumar, A., Jaiswal, D. K. and Kumar, N. (2010). Analytical solutions to one-dimensional advection–diffusion equation with variable coefficients in semi-infinite media. J. Hydrol., 380; 330-337.
Kumar, N. and Kumar, M. (1998). Solute dispersion along unsteady groundwater flow in a semi-infinite aquifer. Hydro. and Earth System Sciences, 2; 93-100.
Majdalani, S., Chazarin, J. P., Delenne, C. and Guinot, V. (2015). Solute transport in periodical heterogeneous porous media: Importance of observation scale and experimental sampling. J. Hydrol., 520; 52-60.
Marino, M. A. (1974). Distribution of contaminants in porous media flow. Water Resour. Res., 10; 1013-1018.
Ogata, A. (1970). Theory of dispersion in granular media. US Geological Survey Professional Papers, 411-I: 34.
Sanskrityayn, A., Bharati , V. K. and Kumar, N. (2018). Solute transport due to spatio-temporally dependent dispersion coefficient and velocity: analytical solutions. J. Hydrol. Eng., 23(4); 04018009.
Sanskrityayn, A., Bharati, V. K. and Kumar, N. (2016). Analytical solution of ADE with spatiotemporal dependence of dispersion coefficient and velocity using Green’s function method. J. Groundwater Res., 5(1); 24-31.
Singh, M. K. Kumari, P. and Mahato, N. K. (2013). Two-dimensional solute transport in finite homogeneous porous formations. Int. J. Geology, Earth & Environ. Sciences, 3(2); 35-48.
Smedt, F. D. (2006). Analytical solutions for transport of decaying solutes in rivers with transient storage. J. Hydrol., 330(3-4); 672-680.
Su, N., Sander, G. C., Liu, F., Anh, V. and Barry, D. A. (2005). Similarity solutions for solute transport in fractal porous media using a time and scale-dependent dispersivity. App. Mathematical Model., 29; 852-870.
Sudicky, E. A. (1986). A natural gradient experiment on solute transport in a sand aquifer: Spatial variability of hydraulic conductivity and its role in the dispersion process. Water Resour. Res., 22(13); 2069-2082.
Sykes, J. F., Pahwa, S. B., Lantz, R. B. and Ward, D. S. (1982). Numerical simulation of flow and contaminant migration at an extensively monitored landfill. Water Resour. Res., 18(6); 1687-1704.
Van-Genuchten, M. T. and Alves, W. J. (1982). Analytical solutions of the one-dimensional convective-dispersive solute transport equation. U S Dept. Ag. Tech. Bull. No. 1661; 1-51.
Yadav, R. R. and Kumar, L. K. (2018). Two-dimensional conservative solute transport with temporal and scale-dependent dispersion: Analytical solution. Int. J. Adv. in Math., 2018(2); 90-111.
Yadav, R. R. and Jaiswal, D. K. (2011). Two-dimensional analytical solutions for point source contaminants transport in semi- infinite homogeneous porous medium. J. Eng. Sci. and Tech., 6(4); 459-468.
Yadav, R. R., Jaiswal, D. K., Yadav, H. K. and Gulrana. (2011). Temporally dependent dispersion through semi-infinite homogeneous porous media: an analytical solution. IJRRAS, 6 (2); 158-164.
Yadav, S. K., Kumar, A. and Kumar, N. (2012). Horizontal solute transport from a pulse type source along temporally and spatially dependent flow: Analytical solution. J. Hydro., 412-413; 193-199.
Yates, S. R. (1990). An analytical solution for one-dimension transport in heterogeneous porous media. Water Resour. Res., 26(10); 2331-2338.
Yates, S. R. (1992). An analytical solution for one-dimension transport in porous media with an exponential dispersion function. Water Resour. Res., 28(8); 2149-2154.
Zhan, H., Wen, Z., Huang, G. and Sun, D. (2009). Analytical solution of two dimensional solute transports in an aquifer-aquitard system. J. Contaminant Hydrol., 107; 162-174.