Bioremediation of Cadmium by Mixed Indigenous Isolates Serratia liquefaciens BSWC3 and Klebsiella Pneumoniae RpSWC3 Isolated from Industrial and Mining Affected Water Samples

Document Type : Original Research Paper

Authors

1 Department of Agricultural Microbiology, College of Agriculture, Indira Gandhi Krishi Viswavidyalaya, Raipur, 492012, CG, India

2 Department of Soil Science and Agril. Chemistry, College of Agriculture,Indira Gandhi Krishi Viswavidyalaya, Raipur,492012, CG, India

Abstract

A total of 58 Cadmium tolerant bacterial isolates were isolated from 26 samples collected from 20 villages/city of different contaminated water samples from industrial and mining affected areas of Chhattisgarh (India). Out of 58 bacterial isolates, 15 bacterial isolates were able to grow in presence of 40 mM cadmium chloride. These fifteen were further screened by biochemical characterization, antibiotic susceptibility and presence of czcA gene. However, finally five selected isolates (BSWC3, RgCWC2, RgUWC1, RpSWC3, KDWC1) were identified by 16S rRNA gene sequencing belonged to the genus Serratia liquefaciens, Klebsiella quasipneumoniae subsp. similipneumoniae, Klebsiella pneumoniae, Pantoea dispersa and Enterobacter tabaci, respectively. Among these two best culture Serratia liquefaciens BSWC3 and Klebsiella pneumoniae RpSWC3 were testes for their bioremediation efficiency individually as well as in mixed culture. Atomic Absorption spectrophotometer analysis of samples revealed that cadmium (Cd) tolerant bacterial isolates BSWC3, RpSWC3 and Combination of BSWC3 and RpSWC3 were significantly reduce of cadmium concentration i.e. 44.46%, 40% and 50.92%, respectively as compared to control. Therefore, the finding of the present study revealed the use of mixed culture or consortium of indigenous isolates is the better option for bioremediation of heavy metals.

Keywords


Abbas, S. Z., Riaz, M., Ramzan, N., Zahid, M. T., Shakoori, F.R. and Rafatullah, M. (2014). Isolation and characterization of arsenic resistant bacteria from wastewater. Braz. J. Microbiol., 45(4); 1309-1315.
Al-Kharabsheh, A. and Taany, R. (2003). Influence of urbanization on water quality deterioration during drought periods at South Jordan. J. Arid. Environ. 53;619–630
Banerjee, S., Datta, S., Chattyopadhyay, D. and Sarkar, P. (2011). Arsenic accumulating and transforming bacteria isolated from contaminated soil for potential use in bioremediation, Journal of Environmental Science and Health, Part A, 46;14, 1736-1747.
Bhaskar, M. and  Dixit A. K. (2018). Water Quality Appraisal of Hasdeo River at Korba in Chhattisgarh, India. Int. J. Sci. Res., 4(9);1252-1258.
Banerjee, S., Gothalwal, R., Sahu, P. K. and Sao, S. (2015). Microbial Observation in Bioaccumulation of Heavy Metals from the Ash Dyke of Thermal Power Plants of Chhattisgarh, India. Adv. Biosci. Biotechnol., 6; 131-138.
Banjerdkji, P., Vattanaviboon, P. and Mongkolsuk, S. (2005). Exposure to cadmium elevates expression of genes in the oxy R and Ohr R regulons and induces cross-resistance to peroxide killing treatment in Xanthomona scampestris. Appl. Environ. Microbiol., 71 (4); 1843-1849.
Baker-austin, C., Wright, M.S., Stepanauskas, R. and Mcarthur, J.V. (2006). Co-selection of antibiotic and metal resistance. Trends Microbiol. 14; 176–182.
Barberio, C. and Fani, R. (1998). Biodiversity of an Acinetobacter population isolated from activated sludge. Res. Microbiol., 149; 665–673.
Bernhoft, R. A. (2013). Cadmium toxicity and treatment. The Scientific World Journal, 2013.
Brown, A. E, (2007). Benson’s Microbiological Applications, Laboratory Manual in General Microbiology, Short Version, tenth ed., The McGraw Hill Companies , pp. 50.
Cabral, J. P. S. (1992). Selective binding of metal ions to Pseudomonas syringae cells. Microbios., 71; 47–5.
Chowdhury, S., Thakur, A.R. and Chaudhuri, S.R. (2011). Novel Microbial Consortium for Laboratory Scale Lead Removal from City Effluent. J. Environ. Sci.Tech., 4: 41-54.
Cohen, I., Bitan, R. and Nitzan, Y. (1991). The effect of zinc and cadmium ions on Escherichia coli. B. Microbios., 68; 157–168.
Das, D., Chakraborty, A., Bhar, S., Sudarshan, M. and Santra, S.C. (2013). Gamma irradiation in modulating cadmium bioremediation potential of Aspergillus sp. IOSR J. Environ. Sci. Toxicol. Food Tech. 3(6);51-55.
Das, A., Patel, S. S., Kumar, R., Krishna, K.V.S.S., Dutta, S., Saha, M C., Sengupta, S. and  Guha, D. (2018). Geochemical sources of metal contamination in a coal mining area in Chhattisgarh, India using lead isotopic ratios. Chemosphere,197;152-164.
Duan, Y.Q., Zhou, X. K., Yan L. D.,  Li, Q.Q., Dang, L.Z., Zhang, Y.G., Qiu, L.H., Nimaichand, S. and Li, W.J. (2015). Enterobacter tabaci sp. nov., a novel member of the genus Enterobacter isolated from a tobacco stem. Antonie van Leeuwenhoek. 108;1161–1169.
Goswami, R., Mukherjee, S., Rana, V. S., Saha, D.R., Raman, R., Padhy, P.K., and Mazumder, S. (2015). Isolation and characterization of arsenic-resistant bacteria from contaminated water-bodies in West Bengal, India. Geomicrobiol. J., 32(1); 17-26.
Grant, C. A. and Sheppard, S. C. (2008). Fertilizer impacts on cadmium availability in agricultural soils and crops. Human and Ecological Risk Assessment, 14(2); 210-228.
Hassen, A., Saidi, N., Cherif, M. and  Boudabous, A. (1998). Effects of heavy metals on Pseudomonas aeruginosa and Bacillus thuringiensis. Biores. Technol. 65: 73–82.
Higham, D.P., Sadler, P.J., Scawen, M. D. (1984). Cadmium-resistant Pseudomonas putida synthesized novel cadmium proteins. Sci., 225: 1043–1046.
Hogervorst,  J., Plusquin, M., Vangronsveld,  J., Nawrot, T., Cuypers, A., Van Hecke, E. and Staessen, J. A. (2007). House dust as possible route of environmental exposure to cadmium and lead in the adult general population. Environmental research, 103(1): 30-37.
Jareda, G., Mahapatra, S.P.  and Dhekne, P.Y. (2018).Water quality index, heavy metal pollution index and seasonal variation correlation of groundwater of Bailadila iron ore mine area and its peripherals: Dantewada district, Chhattisgarh, India. Desalination and Water Treatment, 101; 7–16.
Järup, L. and Kesson, A. (2009). Current status of cadmium as an environmental health problem. Toxicology and applied pharmacology, 238(3); 201-208.
Kanazawa, S., and Mori, K. (1996). Isolation of Cadmium-Resistant Bacteria and Their Resistance Mechanisms. Soil Sci. Plant Nut., 42(4); 725-730,
Kermani, J. N. A., Ghasemi F. M., Khosravan, A., Farahmand, A. and Shakibaie, M. R.  (2010). Cadmium Bioremediation by Metal-Resistant Mutated Bacteria Isolated from Active Sludge of Industrial Effluent. Iran. J. Environ. Health. Sci. Eng., 7(4): 279-286.
Kim, E.H., Nies, D.H.,  McEvoy, M.M. and  Rensing,  C. (2011).Switch or funnel: how RND-type transport systems control periplasmic metal homeostasis. J. Bacteriol. 193; 2381-2387.
Knapp, C.W., McCluskey, S.M., Singh, B.K., Campbell, C.D., Hudson G. and Graham, D.W. (2011). Antibiotic Resistance Gene Abundances Correlate with Metal and Geochemical Conditions in Archived Scottish Soils. PLoS ONE 6(11): e27300.
Kozyrovska N.O., Korniichuk O.S., Voznyuk T.M., Lytvynenko T.L., Rogutskyy I.S. and Mytrokhyn O.V. (2004). Microbial community in a precursory scenario of growing Tagetes patula L. in a lunar greenhouse, Kosm. Nauka Technol. (Space Sci. Technol.), 10, 221-225.
Kumar, R., Singh, P., Dhir, B., Sharma, A. K. and Mehta, D. (2017).Potential of Some Fungal and Bacterial Species in Bioremediation of Heavy Metals. J. Nucl. Phy. Mat. Sci. Rad. Appl. 2; 213-223.
Lee, E.Y., Lim, J.S., Oh, K.H., Lee, J.Y., Kim, S.K., Lee, Y.K. and Kim, K. (2008). Removal of heavy metals by an enriched consortium. J Microbiol., 46; 23-28.
Lin, X., Mou, R., Cao, Z., Xu, P.,  Wu, X., Zhu, Z., Chen, M.  (2016). Characterization of cadmium-resistant bacteria and their potential for reducing accumulation of cadmium in rice grains. Sci. Tot. Environ. 569–570 (1), 97-104.
Li, J., Liang, Z., Jia, P.,   Liu,,J., Xu, Y., Chen, Y., Shu, H., Kuang, J., Liao, B. and  Shu W. (2017). Effects of a bacterial consortium from acid mine drainage on cadmium phytoextraction and indigenous soil microbial community.Plant Soil,  415;347.
Malekzadeh, E., Alikhani, H. A., Savaghebi-Firoozabadi, G. R. and Zarei, M. (2012). Bioremediation of Cadmium-Contaminated Soil through Cultivation of Maize Inoculated with Plant Growth–Promoting Rhizobacteria, Bioremed. J., 16(4); 204-211
Mathivanan, K. and Rajaram, (2014). Isolation and characterization of cadmium resistant bacteria from an industrially polluted coastal ecosystem on the southeast coast of India. Chem and Ecol., 30(7): 622-635.
Moghannem, S. A., Refaat, B. M., El-Sherbiny,  G. M., El-Sayed, M. H., Elsehemy, I. A. and Kalaba, M. H. (2015). Characterization of heavy metal and antibiotic-resistant bacteria isolated from polluted localities in Egypt. Egyptian Pharmaceutical Journal, 14(3): 158.
Nies, D.H.  (1995). The cobalt, zinc, and cadmium efflux system CzcCBA from Alcaligenes eutrophus functions as a cation-proton antiporter in Escherichia coli. J. Bacteriol. 177; 2707-2712.
Patel, K. S., Sahu, B. L., Dahariya, N. S., Bhatia, A., Patel, R. K., Matini, L., Sracek, O. and  Bhattacharya P. (2015). Groundwater arsenic and fluoride in Rajnandgaon District, Chhattisgarh, northeastern India. Appl.Water Sci., 7; 1817.
Prapagdee, B. and Watcharamusik, A. (2009). Adaptive and cross-protective responses against cadmium and zinc toxicity in cadmium-resistant bacterium isolated from zinc mine. Braz. J. Microbiol., 40:838-845.
Ramya, R. and Boominathan, M. (2017). Isolation of Serratia Liquefaciens as Metal Resistant Bacteria from Industrial Effluent. Int. J. Adv. Res., Ideas Inn. Tech., 3(6): 1272- 1275.
Rensing, C., Pribyl, T. and Nies, D.H. (1997). New functions for the three subunits of the CzcCBA cation-proton antiporter. J. Bacteriol. 179; 6871-6879.
Saluja, B., and Sharma, V. (2014). Cadmium resistance mechanism in acidophilic and alkalophilic bacterial isolates and their application in bioremediation of metal-contaminated soil. Soil and Sediment Contamination: An International Journal, 23(1): 1-17.
Selvaraj, U., Venu‑Babu, P. and Thilagaraj, W. R. (2018) Application of H412R mutant alkaline phosphatase for removal of heavy metals from single‑ion solutions and effluents. Int.  J. Environ. Sci. Tech. https://doi.org/10.1007/s13762-018-1730-y
Sen, S. K., Raut, S., Dora, T.K. and Mohapatra, P.K.D. (2014). Contribution of hot spring bacterial consortium in cadmium and lead bioremediation through quadratic programming model. J. Hazard Mater., 265:47–60.
Sharma, P., Dubey A. and Chatterjee, S.K. (2013). Determination of heavy metals in surface and ground water in an around (Agrang block) Raipur district, Chhattisgarh, India. Int. J. Scient. Eng. Res., 4; 722-724.
Samanta, A., Paramita, B., Mahamuda, K., Chandrima S, Pinaki, P., Asif, L.  and Anurup, M. (2012), An investigation on heavy metal tolerance and antibiotic resistance properties of bacterial strain Bacillus sp. isolated from municipal waste. J. Microbial. Biotech. Res., 2;178-189.
Seiler, C., and Berendonk, T.U. (2012). Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front. Microbiol. 3;399.
Sinegani, A.A.S. and Younessi, N. (2017). Antibiotic resistance of bacteria isolated from heavy metal-polluted soils with different land uses. J. Glob. Antimicrob. Resist., 10;247–255.
Wong, K. K., Quilty, B. and Surif, S. (2013). Degradation of crude oil in the presence of lead (Pb) and cadmium (Cd) by a metal-adapted consortium culture. Adv. Environ. Biol. 7:577–585.
Zhang, Y., Zhang, H., Li, X., Su, Z. and Zhang, C. (2008). The cadA gene in cadmium-resistant bacteria from cadmium-polluted soil in the Zhangshi Area of Northeast China. Curr. Microbiol., 56(3): 236-239.
Zheng, W., Li, X.M., Wang, F., Yang, Q., Deng, P., and Zeng, G.M. (2008). Adsorption removal of cadmium and copper from aqueous solution by areca-A food waste. J. Hazard. Mater., 157:490–495.