Boltes, K., del Aguila, R. A. and García-Calvo, E. (2013). Effect of mass transfer on biodesulfurization kinetics of alkylated forms of dibenzothiophene by Pseudomonas putida CECT5279. J. Chem. Technol. Biotechnol., 88(3); 422-431.
Boniek, D., Figueiredo, D., dos Santos, A. F. B. and de Resende Stoianoff, M. A. (2015). Biodesulfurization: a mini review about the immediate search for the future technology. Clean Technol. Environ. Policy, 17(1); 29-37.
Initial pH
α (mg2-HBP/gcell)
β (mg2-HBP/gcell.h)
Sy.x
Value
t-test
Value
t-test
6
3.37 ± 0.45
23.61
0.04 ± 0.03
3.89
0.20
7
3.53 ± 0.58
19.36
0
˗
0.33
8
3.82 ± 0.57
21.79
0.06 ± 0.04
4.57
0.33
9
2.80 ± 0.27
33.03
0.08 ± 0.02
11.33
0.17
Dejaloud, A., et al.
718
Caro, A., Boltes, K., Leton, P. and Garcia-Calvo, E. (2008). Description of by-product inhibition effects on biodesulfurization of dibenzothiophene in biphasic media. Biodegradation, 19(4); 599-611.
Carvajal, P., Dinamarca, M. A., Baeza, P., Camu, E. and Ojeda, J. (2017). Removal of sulfur-containing organic molecules adsorbed on inorganic supports by Rhodococcus Rhodochrous spp. Biotechnol. Lett., 39; 241-245.
Chen, H., Zhang, W.J., Cai, Y. B., Zhang, Y. and Li, W. (2008). Elucidation of 2-hydroxybiphenyl effect on dibenzothiophene desulfurization by Microbacterium sp. strain ZD-M2. Bioresour. Technol., 99(15); 6928-6933.
Debabov, V. G. (2010). Microbial desulfurization of motor fuel. Appl. Biochem. Microbiol., 46; 733-738.
Dejaloud, A., Vahabzadeh, F. and Habibi, A. (2017). Ralstonia eutropha as a biocatalyst for desulfurization of dibenzothiophene. Bioprocess. Biosyst. Eng., 40(7); 969-980.
del Olmo, C. H., Santos, V. E., Alcon, A. and Garcia-Ochoa, F. (2005). Production of a Rhodococcus erythropolis IGTS8 biocatalyst for DBT biodesulfurization: influence of operational conditions. Biochem. Eng. J., 22(3); 229-237.
Doelle, H. W., Ewings, K. N. and Hollywood, N. W. (1981). Regulation of glucose metabolism in bacterial systems. Adv. Biochem. Eng./Biotechnol., 23; 1-36.
Kilbane, J. J. and Stark, B. (2016). Biodesulfurization: a model system for microbial physiology research. World J. Microbiol. Biotechnol., 32(8); 137.
Kim, Y. J., Chang, J. H., Cho, K. S., Ryu, H. W. and Chang, Y. K. (2004). A physiological study on growth and dibenzothiophene (DBT) desulfurization characteristics of Gordonia sp. CYKS1. Korean J. Chem. Eng., 21(2); 436-441.
Lapin, L. L. (1997). Modern Engineering Statistics. (Belmont, CA: Duxbury Press)
Luedeking, R. and Piret, E. L. (1959). A Kinetic study of the lactic acid fermentation. Batch process at controlled pH. J. Biochem. Microbiol. Technol. Eng., 1(4); 393-412.
Martin, A. B., Alcon, A., Santos, V. E. and Garcia-Ochoa, F. (2005). Production of a biocatalyst of Pseudomonas putida CECT5279 for DBT biodesulfurization: Influence of the operational conditions. Energy Fuels, 19; 775-782.
Martinez, I., Mohamed, M. E., Santos, V. E., Garcia, J. L., Garcia-Ochoa, F. and Diaz, E. (2017). Metabolic and process engineering for biodesulfurization in Gram-negative bacteria. J. Biotechnol., 262; 47-55.
Martinez, I., Santos, V. E., Alcon, A. and Garcia-Ochoa, F. (2015). Enhancement of the biodesulfurization capacity of Pseudomonas putida CECT5279 by co-substrate addition. Process Biochem., 50(1); 119-124.
Millard, P., Smallbone, K. and Mendes, P. (2017). Metabolic regulation is sufficient for global and robust coordination of glucose uptake, catabolism, energy production and growth in Escherichia coli. PLOS Comput. Biol., 13(2); 1-24.
Mohebali, G. and Ball, A. S. (2016). Biodesulfurization of diesel fuels-Past, present and future perspectives. Int. Biodeterior. Biodegrad. 110; 163-180.
Neijssel, O. M. and Tempest, D. W. (1976). Bioenergetic aspects of aerobic growth of Klebsiella aerogenes NCTC 418 in carbon-limited and carbon-sufficient chemostat culture. Arch. Microbiol., 107(2); 215-221.
Pirt, S. J. (1965). The maintenance energy of bacteria in growing cultures. Proc. R. Soc. London, Ser. B, 163(991); 224-231.
Pirt, S. J. (1982). Maintenance energy: a general model for energy-limited and energy-sufficient growth. Arch. Microbiol., 133(4); 300-302.
Razvi, A., Zhang, Z. and Lan, C. Q. (2008). Effects of glucose and nitrogen source concentration on batch fermentation kinetics of Lactococcus lactis under hemin-stimulated respirative condition. Biotechnol. Prog., 24(4); 852-858.
Repaske, D. R. and Adler, J. (1981). Change in intracellularr pH of Escherichia coli mediates the chemotactic response to certain attractants and repellents. J. Bacteriol., 145(3); 1196-1208.
Soleimani, M., Bassi, A. and Margaritis, A. (2007). Biodesulfurization of refractory organic sulfur compounds in fossil fuels. Biotechnol. Adv., 25(6); 570-596.
Srinivasan, K. and Mahadevan, R. (2010). Characterization of proton production and consumption associated with microbial metabolism. BMC Biotechnol., 10(2); 1-10.
Tsai, S. P. and Lee, Y. H. (1990). A model for energy-sufficient culture growth. Biotechnol. Bioeng., 35(2); 138-145.
van Bodegom, P. (2007). Microbial maintenance: A critical review on its quantification. Microb. Ecol., 53(4); 513-523.
Wang, Z. L., Wang, D., Li, Q., Li, W. L., Tang, H. and
Pollution, 5(4): 709-719, Autumn 2019
Pollution is licensed under a "Creative Commons Attribution 4.0 International (CC-BY 4.0)"
719
Xing, J. M. (2011). Enhanced biodesulfurization by expression of dibenzothiophene uptake genes in Rhodococcus erythropolis. World J. Microbiol. Biotechnol., 27(9); 1965-1970.
Zhou, J., Liu, L., Shi, Z., Du, G. and Chen, J. (2009). ATP in current biotechnology: Regulation, applications and perspectives. Biotechnol. Adv., 27(1); 94-101.
Zubay, G. L. (1998). Biochemistry. (Dubuque, Iowa: William C Brown Pub)