Residues and Dissipation Kinetics of Two Imidacloprid Nanoformulations on Bean (Phaseolus vulgaris L.) under Field Conditions

Document Type : Original Research Paper

Authors

1 Department of Pesticides Researches, Iranian Research Institute of Plant Protection, Tehran, Iran

2 Department of Plant Protection, University of Guilan, Rasht, Iran

3 Department of Plant Protection, University of Tehran, Karaj, Iran

4 Department of Chemistry, University of Lorestan, Khoramabad, Iran Institute of Chemistry and Biochemistry, Freie Universitat Berlin, Berlin, Germany

Abstract

The current study investigates the dissipation kinetics of two imidacloprid (IMI) nanoformulations (entitled: Nano-IMI and Nano-IMI/TiO2) on common bean (Phaseolus vulgaris) seeds under field conditions and compares them with 35% Suspension Concentrate (SC) commercial formulation. To do so, it sprays P. vulgaris plants at 30 and 60 g/ha within green bean stage, sampling them during the 14-day period after the treatment. Following extraction and quantification of IMI residues, dissipation data have been fitted to simple-first order kinetic model (SFOK) and to first-order double-exponential decay (FODED) models, with 50% and 90% dissipation times (DT50 and DT90, respectively) assessed along the pre-harvest interval (PHI). With the exception of Nano-IMI at 60 g/ha, other decline curves are best fitted to the FODED model. In general, dissipation is faster for Nano-IMI (at 30 g/ha: DT50 = 1.09 days, DT90 = 4.30 days, PHI = 1.23 days; at 60 g/ha: DT50 = 1.29 days, DT90 = 4.29 days, PHI = 2.95 days) and Nano-IMI/TiO2 (at 30 g/ha: DT50 = 1.15 days, DT90 = 4.40 days, PHI = 1.08 days; at 60 g/ha: DT50 = 0.86 days, DT90 = 4.92 days, PHI = 3.02 days), compared to 35% SC (at 30 g/ha: DT50 = 1.58, DT90 = 6.45, PHI = 1.93; at 60 g/ha: DT50 = 1.58 days, DT90 = 14.50 days, PHI = 5.37 days). These results suggest the suitability of Nano-IMI and Nano-IMI/TiO2 application at both rates in terms of their residues on P. vulgaris seeds.

Keywords


Anastassiades, M., Lehotay, S. J., Štajnbaher, D. and Schenck, F. J. (2003). Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int., 86(2); 412-431.
Anjali, C. H., Khan, S. S., Margulis-Goshen, K., Magdassi, S., Mukherjee, A. and Chandrasekaran, N. (2010). Formulation of water-dispersible nanopermethrin for larvicidal applications. Ecotoxicol. Environ. Saf., 73(8); 1932-1936. Bhattacharyya, A., Bhaumik, A., Rani, P. U., Mandal, S. and Epidi, T. T. (2010). Nano-particles-A recent approach to insect pest control. Afr. J. Biotechnol., 9(24); 3489-3493.
Corley, J. (2003). Best practices in establishing detection and quantification limits for pesticide residues in foods. In Lee, P. W., Aizawa, H., Barefoot, A. C. and Murphy, J.J. (eds.) Handbook of residue analytical methods for agrochemicals. Wiley, Chichester, pp. 59–75.
EFSA (European Food Safety Authority). (2009). Scientific Opinion of the Scientific Committee on a request from the European Commission on the Potential Risks Arising from Nanoscience and Nanotechnologies on Food and Feed Safety. EFSA J., 958; 1-39. EFSA Scientific Committee. (2011) Scientific Opinion on Guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. EFSA J., 9(5); 2140-2196. EFSA Scientific Committee. (2013). Scientific Opinion on the hazard assessment of endocrine disruptors: scientific criteria for identification of endocrine disruptors and appropriateness of existing test methods for assessing effects mediated by these substances on human health and the environment. EFSA J.,11(3); 3132-3216. EFSA Scientific Committee, Hardy, A., Benford, D., Halldorsson, T., Jeger, M. J., Knutsen, H. K., More, S., Naegeli, H., Noteborn, H., Ockleford, C., Ricci, A., Rychen, G., Schlatter, J. R., Silano, V., Solecki, R., Turck, D., Younes, M., Chaudhry, Q., Cubadda, F., Gott, D., Oomen, A., Weigel, S., Karamitrou, M., Schoonjans, R. and Mortensen, A. (2018). Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health. EFSA J.,16(7); 5327-5422.
FOCUS. (2006). Guidance document on estimating persistence and degradation kinetics from environmental fate studies on pesticides in EU registration. Report of the FOCUS work group on degradation kinetics, EC document reference Sanco/10058/2005 version 2.0; pp.434.
Geiser, M. and Kreyling, W. G. (2010). Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol., 7; 2-12.
Memarizadeh, N., et al.
Pollution is licensed under a "Creative Commons Attribution 4.0 International (CC-BY 4.0)"
878
Ghormade, V., Deshpande, M. V. and Paknikar, K. M. (2011). Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol. Adv., 29(6); 792-803. Hassanzadeh, N., Esmaili Sari, A. and Bahramifar, N. (2012). Dissipation of imidacloprid in greenhouse cucumbers at single and double dosages spraying. J. Agr. Sci., Tech-Iran, 14(3); 557-564. Kapoor, U., Srivastava, M. K., Srivastava, A. K., Patel, D. K., Garg, V. and Srivastava, L. P. (2013). Analysis of imidacloprid residues in fruits, vegetables, cereals, fruit juices, and baby foods, and daily intake estimation in and around Lucknow, India. Environ. Toxicol. Chem., 32(3); 723-727. Khan, Z., Kamble, N., Bhongale, A., Girme, M., Chauhan, V. B. and Banerjee, K. (2018). Analysis of pesticide residues in tuber crops using pressurized liquid extraction and gas chromatography-tandem mass spectrometry. Food Chem., 241; 250-257. Khay, S., El-Aty, A. M., Lim, K. T. and Shim, J. H. (2006). Residues of diazinon in growing Chinese cabbage: a study under greenhouse conditions. Korean J. Environ. Agric., 25(2); 174-179. Khot, L. R., Sankaran, S., Maja, J. M., Ehsani, R. and Schuster, E. W. (2012). Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot., 35; 64-70. Kunkel, B. A., Held, D. W. and Potter, D. A. (2001). Lethal and sublethal effects of bendiocarb, halofenozide, and imidacloprid on Harpalus pennsylvanicus (Coleoptera: Carabidae) following different modes of exposure in turfgrass. J. Econ. Entomol., 94(1); 60-67. Leili, M., Pirmoghani, A., Samadi, M. T., Shokoohi, R., Roshanaei, G. and Poormohammadi, A. (2016). Determination of pesticides residues in cucumbers grown in greenhouse and the effect of some procedures on their residues. Iran J. Public Health, 45(11); 1481. Memarizadeh, N., Ghadamyari, M., Adeli, M. and Talebi, K. (2014a). Preparation, characterization and efficiency of nanoencapsulated imidacloprid under laboratory conditions. Ecotoxicol. Environ. Saf., 107; 77-83. Memarizadeh, N., Ghadamyari, M., Adeli, M. and Talebi, K. (2014b). Linear-dendritic copolymers/ indoxacarb supramolecular systems: biodegradable and efficient nano-pesticides. Environ. Sci. Process Impacts, 16(10); 2380-2389. Memarizadeh, N., Ghadamyari, M., Adeli, M. and Talebi, K. (2014c). Biochemical biomarkers of Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) in Exposure to TiO2 Nanoparticles. Invertebrate Surviv. J., 11; 47-53. Memarizadeh, N., Ghadamyari, M., Adeli, M. and Talebi, K. (2014d). Cellular Energy Allocation of Glyphodes pyloalis Walker (Lepidoptera: Pyralidae): Changes Related to Exposure to TiO2 nanoparticles. J. Entomol. Soc-Iran., 33 (4); 1-12.
Memarizadeh, N., Adeli, M. and Ghadamyari. M. (2016). Photodegradable, biocompatible and efficient nano-encapsulated formulation (2016/0000071A1). Prieto, A., Molero, D., González, G., Buscema, I., Ettiene, G. and Medina, D. (2002). Persistence of methamidophos, diazinon, and malathion in tomatoes. Bull. Environ. Contam. Toxicol., 69(4); 479-485.
Rahimi, S., Talebi, K., Torabi, E. and Naveh, V. H. (2015). The dissipation kinetics of malathion in aqueous extracts of different fruits and vegetables. Environ. Monit. Assess., 187(11); 685-693.
Simon, P. and Joner, E. (2008). Conceivable interactions of biopersistent nanoparticles with food matrix and living systems following from their physico-chemical properties. J. Food Nutr. Res., 47(2); 51-59. Talebi, K. (2006). Dissipation of phosalone and diazinon in fresh and dried alfalfa. J. Environ. Sci. Health B., 41(5); 595-603. Torabi, E. and Talebi, K. (2013). Diazinon residues and degradation kinetics for grapes under field conditions. J. Environ. Sci. Health B., 48(4); 260-265. Torabi, E., Talebi, K., Pourbabaei, A. and Ahmadzadeh, M. (2017). Diazinon dissipation in pesticide-contaminated paddy soil: kinetic modeling and isolation of a degrading mixed bacterial culture. Environ. Sci. Pollut. Res., 24(4); 4117-4133. Yi, X. and Lu, Y. (2006). Residues and dynamics of probenazole in rice field ecosystem. Chemosphere, 65(4); 639-643.
Yu, Y., Hu, S., Yang, Y., Zhao, X., Xue, J., Zhang, J., Gao, S. and Yang, A. (2018). Successive monitoring surveys of selected banned and restricted pesticide residues in vegetables from the northwest region of China from 2011 to 2013. BMC Health Serv. Res., 18(1); 1-9.