Angenent, L.T., Karim, K., Al-Dahhan, M.H., Wrenn, B.A. and Domíguez-Espinosa, R. (2004). Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol., 22(9): 477-485.
Barua, P.K. and Deka, D. (2010). Electricity generation from biowaste based microbial fuel cells. Int. J. Energy Info. Commun., 1(1): 77-92.
Bhowmick, G.D., Das, S., Verma, H.K., Neethu, B. and Ghangrekar, M.M. (2019). Improved performance of microbial fuel cell by using conductive ink printed cathode containing Co3O4 or Fe3O4. Electrochim. Acta, 310: 173-183.
Chaturvedi, V. and Verma, P. (2016). Microbial fuel cell: a green approach for the utilization of waste for the generation of bioelectricity. BIOB, 3(1): 38.
Cheng, S. and Logan, B.E. (2007). Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem. Commun., 9(3): 492-496.
Chu, S. and Majumdar, A. (2012). Opportunities and challenges for a sustainable energy future. nature, 488(7411): 294-303.
Daniel, D.K., Mankidy, B.D., Ambarish, K. and Manogari, R. (2009). Construction and operation of a microbial fuel cell for electricity generation from wastewater. Int. J. Hydrog. Energy, 34(17): 7555-7560.
Das, S. and Ghangrekar, M.M. (2019). Tungsten oxide as electrocatalyst for improved power generation and wastewater treatment in microbial fuel cell. Environ. Technol., 1-8.
Deng, Q., Li, X., Zuo, J., Ling, A. and Logan, B.E. (2010). Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell. J. Power Sources, 195(4): 1130-1135.
Dumas, C., Mollica, A., Féron, D., Basséguy, R., Etcheverry, L. and Bergel, A. (2007). Marine microbial fuel cell: use of stainless steel electrodes as anode and cathode materials. Electrochim. acta, 53(2): 468-473.
Goswami, R. and Mishra, V.K. (2018). A review of design, operational conditions and applications of microbial fuel cells. Biofuels, 9(2): 203-220.
Iranpour, R., Stenstrom, M., Tchobanoglous, G., Miller, D., Wright, J. and Vossoughi, M. (1999). Environmental engineering: energy value of replacing waste disposal with resource recovery. Science, 285(5428): 706-711.
Jadhav, D. A., Ghadge, A. N., Mondal, D., & Ghangrekar, M. M. (2014). Comparison of oxygen and hypochlorite as cathodic electron acceptor in microbial fuel cells. Bioresource technology, 154, 330-335.
Kumar, A., Kumar, N., Baredar, P. and Shukla, A. (2015). A review on biomass energy resources, potential, conversion and policy in India. Renewable Sustainable Energy Rev., 45: 530-539.
Kumar, S.S., Basu, S. and Bishnoi, N.R. (2017). Effect of cathode environment on bioelectricity generation using a novel consortium in anode side of a microbial fuel cell. Biochem. Eng. J., 121: 17-24.
Larminie, J., Dicks, A. and McDonald, M.S. (2003). Fuel cell systems explained (Vol. 2). Chichester, UK: J. Wiley.
Li, S. and Chen, G. (2017). Effects of evolving quality of landfill leachate on microbial fuel cell performance. Waste Manage. Res., 36(1): 59-67.
Li, S. and Chen, G. (2018). Factors affecting the effectiveness of bioelectrochemical system applications: Data synthesis and meta-analysis. Batteries, 4(3): 34.
Li, S., Chen, G. and Anandhi, A. (2018). Applications of Emerging Bioelectrochemical Technologies in Agricultural Systems: A Current Review. Energies, 11(11): 2951.
Lin, C.W., Wu, C.H., Chiu, Y.H. and Tsai, S.L. (2014). Effects of different mediators on electricity generation and microbial structure of a toluene powered microbial fuel cell. Fuel, 125, 30-35.
Liu, H. and Logan, B.E. (2004). Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. technol., 38(14): 4040-4046.
Lu, N., Zhou, S.G., Zhuang, L., Zhang, J.T. and Ni, J.R. (2009). Electricity generation from starch processing wastewater using microbial fuel cell technology. Biochem. Eng. J., 43(3): 246-251.
Lv, Z., Xie, D., Yue, X., Feng, C. and Wei, C. (2012). Ruthenium oxide-coated carbon felt electrode: a highly active anode for microbial fuel cell applications. J. Power Sources, 210: 26-31.
Neethu, B., Pradhan, H., Sarkar, P., and Ghangrekar, M.M. (2019). Application of ion exchange membranes in enhancing algal production alongside desalination of saline water in microbial fuel cell. MRS Advances, 4(19), 1077-1085.
Oji, A., Opara, C.C. and Oduola, M.K. (2012). Fundamentals and Field Application of Microbial Fuel cells (MFCs). Euro. J. Appl. Eng. Sci. Res, 1(4): 185-189.
Pandey, B.K., Mishra, V. and Agrawal, S. (2011). Production of bio-electricity during wastewater treatment using a single chamber microbial fuel cell. Int. J. Eng. Sci. Technol., 3(4): 42-47.
Pradhan, H. and Ghangrekar, M.M. (2019). Effect of Cathodic Electron Acceptors on the Performance of Microbial Desalination Cell. In Waste Water Recycling and Management(pp. 305-315). Springer, Singapore.
Rahimnejad, M., Ghoreyshi, A.A., Najafpour, G. and Jafary, T. (2011). Power generation from organic substrate in batch and continuous flow microbial fuel cell operations. Appl. Energy, 88(11): 3999-4004.
Rodrigo, M.A., Cañizares, P., García, H., Linares, J.J. and Lobato, J. (2009). Study of the acclimation stage and of the effect of the biodegradability on the performance of a microbial fuel cell. Bioresource technology, 100(20), 4704-4710.
Santoro, A., Rimassa, L., Borbath, I., Daniele, B., Salvagni, S., Van Laethem, J.L. and Miles, S. (2013). Tivantinib for second-line treatment of advanced hepatocellular carcinoma: a randomised, placebo-controlled phase 2 study. The lancet oncology, 14(1): 55-63.
Santoro, C., Arbizzani, C., Erable, B. and Ieropoulos, I. (2017). Microbial fuel cells: from fundamentals to applications. A review. J. Power Sources, 356: 225-244.
Slate, A.J., Whitehead, K.A., Brownson, D.A. and Banks, C.E. (2019). Microbial fuel cells: An overview of current technology. Renewable Sustainable Energy Rev., 101: 60-81.
Wang, X., Gao, N., Zhou, Q., Dong, H., Yu, H. and Feng, Y. (2013). Acidic and alkaline pretreatments of activated carbon and their effects on the performance of air-cathodes in microbial fuel cells. Bioresour. technol., 144: 632-636.
Xie, X., Ye, M., Hu, L., Liu, N., McDonough, J.R., Chen, W. and Cui, Y. (2012). Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes. Energy Environ. Sci., 5(1): 5265-5270.
Ye, Y., Ngo, H.H., Guo, W., Liu, Y., Chang, S.W., Nguyen, D.D., Ren, J., Liu, Y. and Zhang, X. (2019). Feasibility study on a double chamber microbial fuel cell for nutrient recovery from municipal wastewater. Chem. Eng. J., 358: 236-242.
Yuan, Y. and Kim, S.H. (2008). Improved performance of a microbial fuel cell with polypyrrole/carbon black composite coated carbon paper anodes. B. Korean Chem. Soc., 29(7): 1344-1348.
Zhang, F., Jacobson, K. S., Torres, P., & He, Z. (2010). Effects of anolyte recirculation rates and catholytes on electricity generation in a litre-scale upflow microbial fuel cell. Energy & Environmental Science, 3(9), 1347-1352.
Zhang, Y., Sun, J., Hu, Y., Li, S. and Xu, Q. (2012). Bio-cathode materials evaluation in microbial fuel cells: a comparison of graphite felt, carbon paper and stainless steel mesh materials. Int. J. Hydrog. Energy, 37(22): 16935-16942.
Zhou, M., Wang, H., Hassett, D.J. and Gu, T. (2013). Recent advances in microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) for wastewater treatment, bioenergy and bioproducts. J. Chem. Technol. Biotechnol., 88(4): 508-518.