Akbarpour, S., and Niksokhan, M.H. (2018). Investigating effects of climate change, urbanization, and sea level changes on groundwater resources in a coastal aquifer: an integrated assessment. Environ. Monit. Assess., 190(10); 579.
Amin, M.M., Veith, T.L., Collick, A.S., Karsten, H.D. and Buda, A.R. (2017). Simulating hydrological and nonpoint source pollution processes in a karst watershed: A variable source area hydrology model evaluation. Agric. Water Management, 180; 212-223.
Aral, M.M. and Liao, B. (1996). Analytical solutions for two-dimensional transport equation with time-dependent dispersion coefficients. J. Hydrol. Eng., 1(1); 20-32.
Bai, B., Li, H., Xu, T. and Chen, X. (2015). Analytical solutions for contaminant transport in a semi-infinite porous medium using the source function method. Comput. Geotech., 69; 114-123.
Balla, K., Kéri, G., and Rapcsák, T. (2002). Pollution of underground water: a computational case study using a transport model. J. Hydroinform., 4(4); 255-263.
Bauer, M., Fulda, B., and Blodau, C. (2008). Groundwater derived arsenic in high carbonate wetland soils: Sources, sinks, and mobility. Sci. Total Environ., 401(1); 109-120.
Chatterjee, A. and Singh, M.K (2018). Two-dimensional advection-dispersion equation with depth-dependent variable source concentration. Pollut., 4(1); 1-8.
Chen, J.S. and Liu, C.W. (2011). Generalized analytical solution for advection-dispersion equation in finite spatial domain with arbitrary time-dependent inlet boundary condition. Hydrol. Earth Syst. Sci., 15(8); 2471-2479.
De Smedt, F., Brevis, W. and Debels, P. (2005). Analytical solution for solute transport resulting from instantaneous injection in streams with transient storage. J. Hydrol., 315(1); 25-39.
Freeze, R.A. and Cherry, J.A. (1979). Groundwater Prentice-Hall International. New Jersey: Englewood Cliffs.
Golz, W.J. and Dorroh, J.R. (2001). The convection-diffusion equation for a finite domain with time varying boundaries. App. Math. letters, 14(8); 983-988.
Jia, X., Zeng, F. and Gu, Y. (2013). Semi-analytical solutions to one-dimensional advection–diffusion equations with variable diffusion coefficient and variable flow velocity. App. Math. Comput., 221; 268-281.
Kral, U., Brunner, P.H., Chen, P.C. and Chen, S.R. (2014). Sinks as limited resources? A new indicator for evaluating anthropogenic material flows. Ecol. Indic., 46; 596-609.
Leij, F.J., Priesack, E. and Schaap, M.G. (2000). Solute transport modeled with Green's functions with application to persistent solute sources. J. Contam. Hydrol., 41(1); 155-173.
Logan, J.D. and Zlotnik, V. (1995). The convection-diffusion equation with periodic boundary conditions. App. Math. Letters, 8(3); 55-61.
Moutsopoulos, K.N., Poultsidis, V.G., Papaspyros, J.N. and Tsihrintzis, V.A. (2011). Simulation of hydrodynamics and nitrogen transformation processes in HSF constructed wetlands and porous media using the advection–dispersion-reaction equation with linear sink-source terms. Ecol. Eng., 37(9); 1407-1415.
Natarajan, N. and Kumar, G.S. (2017). Spatial moment analysis of multispecies contaminant transport in porous media. Environ. Eng. Res., 23(1); 76-83.
Nemitz, E., Sutton, M.A., Gut, A., San José, R., Husted, S. and Schjoerring, J.K. (2000). Sources and sinks of ammonia within an oilseed rape canopy. Agric. For. Meteorol., 105(4); 385-404.
Sander, G.C. and Braddock, R.D. (2005). Analytical solutions to the transient, unsaturated transport of water and contaminants through horizontal porous media. Adv. Water Resour., 28(10); 1102-1111.
Shi, X., Lei, T., Yan, Y. and Zhang, F. (2016). Determination and impact factor analysis of hydrodynamic dispersion coefficient within a gravel layer using an electrolyte tracer method. Int. Soil and Water Conser. Res., 4(2); 87-92.
Singh, M.K. and Kumari, P. (2014). Contaminant concentration prediction along unsteady groundwater flow. Modelling and Simulation of Diffusive Processes, Series: Simulation Foundations, Methods and Applications. Springer. XII. 257-276.
Singh, M. K., Singh, V. P. and Das, P. (2015). Mathematical modeling for solute transport in aquifer. J. Hydroinform., 18(3), 481-499.
Srinivasan, V. and Clement, T.P. (2008). Analytical solutions for sequentially coupled one-dimensional reactive transport problems–Part I: Mathematical derivations. Adv. Water Resour., 31(2); 203-218.
Thakur, C.K., Chaudhary, M., van der Zee, S.E.A.T.M. and Singh, M.K. (2019). Two dimensional solute transport with exponential initial concentration distribution and varying flow velocity. Pollut., 5(4); 721-737.
Tkalich, P. (2006). Derivation of high-order advection-diffusion schemes. J. Hydroinform., 8(3); 149-164.
Van Genuchten, M.T. (1981). Analytical solutions for chemical transport with simultaneous adsorption, zero-order production and first-order decay. J. Hydrol., 49(3-4); 213-233.
Van Genuchten, M.T., Leij, F.J., Skaggs, T.H., Toride, N., Bradford, S.A. and Pontedeiro, E.M. (2013). Exact analytical solutions for contaminant transport in rivers 1. The equilibrium advection-dispersion equation. J. Hydrol. Hydromech., 61(2); 146-160.
Van Hecke, M., Storm, C. and van Saarloos, W. (1999). Sources, sinks and wavenumber selection in coupled CGL equations and experimental implications for counter-propagating wave systems. Physica D: Nonlinear Phenomena. 134(1); 1-47.
van Kooten, J.J. (1994). Groundwater contaminant transport including adsorption and first order decay. Stochastic Hydrol. and Hydraul., 8(3); 185-205.
Wang, J., Shao, M.A., Huang, L. and Jia, X. (2017). A general polynomial solution to convection–dispersion equation using boundary layer theory. J. Earth Syst. Sci., 126(3); 40.
West, M.R., Kueper, B.H. and Novakowski, K.S. (2004). Semi-analytical solutions for solute transport in fractured porous media using a strip source of finite width. Adv. Water Resour., 27(11); 1045-1059.
You, K. and Zhan, H. (2013). New solutions for solute transport in a finite column with distance-dependent dispersivities and time-dependent solute sources. J. Hydrol., 487; 87-97.
Zieger, S., Babanin, A.V., Rogers, W.E. and Young, I.R. (2015). Observation based source terms in the third-generation wave model WAVEWATCH. Ocean Modell., 96; 2-25.