Removal of Methyl Orange Dye from Aqueous Solution by a Low-Cost Activated Carbon Prepared from Mahagoni (Swietenia mahagoni) Bark

Document Type : Original Research Paper

Authors

Department of Environmental Science and Technology, Jashore University of Science and Technology, P.O.Box 7408, Jashore, Bangladesh

Abstract

This study utilized Swietenia mahagoni bark–a wood processing industry waste, for the preparation of activated carbon, and then investigated for the removal of methyl orange (MO) dye by the Swietenia mahagoni bark activated carbon (SMBAC). The effect of pH (3–10), adsorbent dose (1–30 g/L), initial MO dye concentration (10–100 mg/L), and contact time (1–240 min) were evaluated. The surface morphology of the SMBAC was characterized by using fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Maximum removal efficiency of MO by SMBAC was 92%, when initial MO dye concentration was 10 mg/L, pH 3.0, adsorbent dose 10.0 g/L and 120 min equilibrium contact time. The adsorption data fitted well with the Freundlich (R2=0.997) and Halsey (R2=0.997) isotherm models than the Langmuir (R2=0.979) model, and express the multilayer adsorption on heterogeneous surface. The maximum adsorption capacity was 6.071 mg/g. The kinetics data were fitted well to pseudo-second order model (R2=0.999) and more than one process were involved during adsorption mechanism but film diffusion was the potential rate controlling step.  The study results showed that SMBAC adsorbed MO effectively, and could be used as a low cost potential bioadsorbent for the removal of anionic dyes in wastewater treatment.

Keywords


  1. Aksu, Z. (2005). Application of biosorption for the removal of organic pollutants: a review. Process Biochem., 40(3-4); 997-1026.

    Ai, L., Zhang, C. and Meng, L. (2011). Adsorption of methyl orange from aqueous solution on hydrothermal synthesized Mg–Al layered double hydroxide. J. Chem. Eng. Data., 56(11); 4217-4225.

    Afroze, S., Sen, T. K. and Ang, H. M. (2016). Adsorption performance of continuous fixed bed column for the removal of methylene blue (MB) dye using Eucalyptus sheathiana bark biomass. Res. Chem. Intermediat., 42(3); 2343-2364.

    Babel, S. and Kurniawan, T. A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J. Hazard. Mater., 97(1-3); 219-243.

    Bellifa, A., Makhlouf, M. and Boumila, Z. H. (2017). Comparative study of the adsorption of methyl orange by bentonite and activated carbon. Acta Phys. Pol. A., 132; 466-468.

    Bhattacharyya, K. G. and Sharma, A. (2005). Kinetics and thermodynamics of methylene blue adsorption on neem (Azadirachta indica) leaf powder. Dyes Pigments., 65(1); 51-59.

    Cáceres-Jensen, L., Rodríguez-Becerra, J., Parra- Rivero, J., Escudey, M., Barrientos, L. and Castro- Castillo, V. (2013). Sorption kinetics of diuron on volcanic ash derived soils. J. Hazard. Mater., 261; 602-613.

    Cheah, W., Hosseini, S., Khan, M. A., Chuah, T. G. and Choong, T. S. (2013). Acid modified carbon coated monolith for methyl orange adsorption. Chem. Eng. J., 215; 747-754.

    Chen, S., Zhang, J., Zhang, C., Yue, Q., Li, Y. and Li, C. (2010). Equilibrium and kinetic studies of methyl orange and methyl violet adsorption on activated carbon derived from Phragmites australis. Desalination., 252(1-3); 149-156.

    DIM, P. E. (2013). Adsorption of methyl red and methyl orange using different tree bark powder. Adsorption., 4 (1); 330-338.

    Freundlich, H. (1906). Over the Adsorption in Solution. J. Chem. Phys., 57; 358–47.

    Garg, V. K., Amita, M., Kumar, R. and Gupta, R. (2004). Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian Rosewood sawdust: a timber industry waste. Dyes Pigments., 63(3); 243-250.

    Garg, V. K., Kumar, R. and Gupta, R. (2004). Removal of malachite green dye from aqueous solution by adsorption using agro-industry waste: a case study of Prosopis cineraria. Dyes Pigments., 62(1); 1-10.

     

    Ghasemian, E. and Palizban, Z. (2016). Comparisons of azo dye adsorptions onto activated carbon and silicon carbide nanoparticles loaded on activated carbon. Int. J. Environ. Sci. Te., 13(2); 501-512.

    Gong, R., Ye, J., Dai, W., Yan, X., Hu, J., Hu, X.,

    Li, S. and Huang, H. (2013). Adsorptive removal of methyl orange and methylene blue from aqueous solution with finger-citron-residue-based activated carbon. Ind. Eng. Chem. Res., 52(39); 14297- 14303.

    Gong, R., Ding, Y., Li, M., Yang, C., Liu, H. and Sun, Y. (2005). Utilization of powdered peanut hull as biosorbent for removal of anionic dyes from aqueous solution. Dyes Pigments., 64(3); 187-192.

    Halim, A. A., Aziz, H. A., Johari, M. A. M. and Ariffin, K. S. (2010). Comparison study of ammonia and COD adsorption on zeolite, activated carbon and composite materials in landfill leachate treatment. Desalination., 262(1-3); 31-35.

    Han, R., Zou, W., Yu, W., Cheng, S., Wang, Y. and Shi, J. (2007). Biosorption of methylene blue from aqueous solution by fallen phoenix tree's leaves. J. Hazard. Mater., 141(1); 156-162.

    Haque, M. A., Khan, G. M., Razzaque, S. M., Khatun, K., Chakraborty, A. K. and Alam, M. S. (2013). Extraction of rubiadin dye from Swietenia mahagoni and its dyeing characteristics onto silk fabric using metallic mordants. Indian J. Fibre. Text. Res., 38; 280-284.

    Haque, E., Jun, J. W. and Jhung, S. H. (2011). Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal- organic framework material, iron terephthalate (MOF-235). J. Hazard. Mater., 185(1); 507-511.

    Ho, Y. S. and McKay, G. (2000). The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res., 34(3); 735-742.

    Huang, J. H., Huang, K. L., Liu, S. Q., Wang, A. T. and Yan, C. (2008). Adsorption of Rhodamine B and methyl orange on a hypercrosslinked polymeric adsorbent in aqueous solution . Colloid Surf. A Physicochem. Eng. Asp., 330(1); 55-61.

    Hasan, M. B. and Hammood, Z. A. (2018). Wastewater Remediation via Modified Activated Carbon: A Review. Pollution, 4(4); 707-723.

    Jalil, A. A., Triwahyono, S., Adam, S. H., Rahim,

    1. D., Aziz, M. A. A., Hairom, N. H. H., Razali, N.
    2. M., Abidin, M. A. Z. and Mohamadiah, M. K.
    3. (2010). Adsorption of methyl orange from aqueous solution onto calcined Lapindo volcanic mud. J.   Hazard.   Mater.,   181(1-3);   755-762.

     

     

     

    Kumar, K. V. and Kumaran, A. (2005). Removal of methylene blue by mango seed kernel powder. Biochem. Eng. J., 27(1); 83-93.

    Langmuir, I. (1917). The Constitution and Fundamental Properties of Solids and Liquids.II. Liquids. J. Am. Chem. Soc., 39(9); 1848–1906.

    León, G., García, F., Miguel, B. and Bayo, J. (2016). Equilibrium, kinetic and thermodynamic studies of methyl orange removal by adsorption onto granular activated carbon. Desalin. Water Treat., 57(36); 17104-17117.

    Leitch, A. E., Armstrong, P. B., and Chu, K. H. (2006). Characteristics of dye adsorption by pretreated pine bark adsorbents. Int. J. Environ. Stud., 63(1); 59-66.

    Liu, L., Lin, Y., Liu, Y., Zhu, H. and He, Q. (2013).

    Removal of methylene blue from aqueous solutions by sewage sludge based granular activated carbon: adsorption equilibrium, kinetics, and thermodynamics. J. Chem. Eng. Data., 58(8); 2248-2253.

    Malkoc, E., and Nuhoglu, Y. (2007). Determination of Kinetic and Equilibrium Parameters of the Batch Adsorption of Cr(VI) onto Waste Acorn of Quercusith aburensis. Chem. Eng. Process., 46 (10); 1020-1029.

    Nethaji, S., Sivasamy, A. and Mandal, A. B. (2013). Adsorption isotherms, kinetics and mechanism for the adsorption of cationic and anionic dyes onto carbonaceous particles prepared from Juglans regia shell biomass. Int. J. Environ. Sci. Te., 10(2); 231-242.

    Nasuha, N. and Hameed, B. H. (2011). Adsorption of methylene blue from aqueous solution onto NaOH-modified rejected tea. Chem. Eng. J., 166(2); 783-786.

    Olajire, A. A., Giwa, A. A., and Bello, I. A. (2015). Competitive adsorption of dye species from aqueous solution onto melon husk in single and ternary dye systems. Int. J. Environ. Sci. Te., 12(3); 939-950.

    Özcan, A. S. and Özcan, A. (2004). Adsorption of acid dyes from aqueous solutions onto acid-activated bentonite. J. Colloid Interface. Sci., 276(1); 39-46.

    Panda, G. C., Das, S. K. and Guha, A. K. (2009). Jute stick powder as a potential biomass for the removal of congo red and rhodamine B from their aqueous solution. J. Hazard. Mater., 164(1); 374-379.

    Panda, S. P., Haldar, P. K., Bera, S., Adhikary, S. and Kandar, C. C. (2010). Antidiabetic and antioxidant activity of Swietenia mahagoni in streptozotocin-induced diabetic rats. Pharm. Biol., 48(9); 974-979.

    Pathania, D., Sharma, S. and Singh, P. (2017). Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arab. J. Chem., 10; 1445-1451.

    Rattanapan, S., Srikram, J., and Kongsune, P. (2017). Adsorption of methyl orange on coffee grounds activated carbon. Energy Procedia., 138; 949-954.

    Royer, B., Cardoso, N. F., Lima, E. C., Vaghetti, J. C., Simon, N. M., Calvete, T. and Veses, R. C. (2009). Applications of Brazilian pine-fruit shell in natural and carbonized forms as adsorbents to removal of methylene blue from aqueous solutions—Kinetic and equilibrium study. J. Hazard. Mater., 164(2-3); 1213-1222.

    Saha, T. K., Bhoumik, N. C., Karmaker, S., Ahmed,

    1. G., Ichikawa, H. and Fukumori, Y. (2010). Adsorption of methyl orange onto chitosan from aqueous solution. J. Water Resource Prot., 2(10); 898.

    Salazar-Rabago, J. J., Leyva-Ramos, R., Rivera- Utrilla, J., Ocampo-Perez, R. and Cerino-Cordova,

    1. J. (2017). Biosorption mechanism of Methylene Blue from aqueous solution onto White Pine (Pinus durangensis) sawdust: effect of operating conditions. Sustain. Environ. Res., 27(1); 32-40.

    Senthil K. P., Ramakrishnan, K., Dinesh Kirupha, S., and Sivanesan, S. (2011). Thermodynamic, kinetic, and equilibrium studies on phenol removal by use of cashew nut shell. Can. J. Chem. Eng., 89(2); 284-291.

    Song, C., Wu, S., Cheng, M., Tao, P., Shao, M. and Gao, G. (2014). Adsorption studies of coconut shell carbons prepared by KOH activation for removal of lead (II) from aqueous solutions. Sustainability., 6(1); 86-98.

    Srivastava, V. C., Swamy, M. M., Mall, I. D., Prasad,

    1. and Mishra, I. M. (2006). Adsorptive removal of phenol by bagasse fly ash and activated carbon: equilibrium, kinetics and thermodynamics. Colloid Surf. A Physicochem. Eng. Asp., 272(1-2); 89-104.

    Sun, Y., Wang, G., Dong, Q., Qian, B., Meng, Y. and Qiu, J. (2014). Electrolysis removal of methyl orange dye from water by electrospun activated carbon fibers modified with carbon nanotubes. Chem. Eng. J., 253; 73-77.

    Vinoth, M., Lim, H. Y., Xavier, R., Marimuthu, K., Sreeramanan, S., Rosemal, H. M. H. and Kathiresan, S. (2010). Removal of methyl orange from solutions using yam leaf fibers. Int. J. Chemtech Res., 2(4); 1892-1900.

    Wang, H., Xie, R., Zhang, J. and Zhao, J. (2018). Preparation and characterization of distillers’ grain based activated carbon as low cost methylene blue adsorbent: Mass transfer and equilibrium modeling. Adv. Powder Technol., 29(1); 27-35.

    Wang, J., Ma, H., Yuan, W., He, W., Wang, S. and You, J. (2014). Synthesis and characterization of an

     

    inorganic/organic-modified bentonite and its application in methyl orange water treatment. Desalin. Water Treat., 52(40-42); 7660-7672.

    Weber, W. J. and Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div., 89(2); 31-60.

    Yu, J., Zhang, X., Wang, D. and Li, P. (2018). Adsorption of methyl orange dye onto biochar adsorbent prepared from chicken manure. Wat. Sci. Tech., 77(5); 1303-1312.

    Zhao, P., Zhang, R. and Wang, J. (2017). Adsorption of methyl orange from aqueous solution using chitosan/diatomite composite. Wat. Sci. Tech., 75(7); 1633-1642.

    Zhuannian, L. I. U., Anning, Z. H. O. U., Guirong,

    1. A. N. G. and Xiaoguang, Z. H. A. O. (2009). Adsorption behavior of methyl orange onto modified ultrafine coal powder. Chinese J. Chem. Eng., 17(6); 942-948.