Arena, M.P., Capozzi, V., Spano, G. and Fiocco, D. (2017) The potential of lactic acid bacteria to colonize biotic and abiotic surfaces and the investigation of their interactions and mechanisms.
Pollution, 6(2): 295-304, Spring 2020
303
Appl. Microbiol. Biotechnol., 101; 2641–2657. https://doi.org/10.1007/s00253-017-8182-z
Bellon-Fontaine, M. N. and Cerf, O. (1990). Experimental determination of spreading pressure in solid and liquid vapor systems. J. Adhes. Sci. Technol., 4; 475–480.
Bellon-Fontaine, M. N., Rault, J. and Van Oss, C. J. (1996). Microbial adhesion to solvents: a novel method to determine the electron donor/electron acceptor or Lewis acid-base properties of microbial cells. Colloids Surfaces B, 7; 47–53.
Bhakta, J. N., Ohnishi, K., Munekage, Y. and Iwasaki, K. (2012). Characterization of lactic acid bacteria‐based probiotics as potential heavy metal sorbents. J. Appl. Microbiol., 112(6); 1193-1206. https://doi.org/10.1111/j.1365-2672.2012.05284.x
Bhattacharya, A. and Gupta, A. (2013). Evaluation of Acinetobacter sp B9 for Cr (VI) resistance and detoxification with potential application in bioremediation of heavy-metals-rich industrial wastewater. Environ. Sci. Pollut. Res., 20(9); 6628–6637.
Bilgiç, A., and Çimen, A. (2019). Removal of chromium (VI) from polluted wastewater by chemical modification of silica gel with 4-acetyl-3-hydroxyaniline. RSC Advances, 9(64); 37403-37414.
Briandet, R., Meylheuc, T., Maher, C. and Bellon-Fontaine, M.N. (1999). Listeria monocytogenes Scott A: cell surface charge, hydrophobicity and electron donor and acceptor characteristics under different environmental growth conditions. J. Appl. Environ. Microbiol., 65; 5328-5333.
Burgain, J., Scher, J., Francius, G. and Borges, F. (2014). Lactic acid bacteria in dairy food: Surface characterization and interactions with food matrix components. Adv. Colloid Interface Sci., 213; 21–35. https://doi.org/10.1016/j.cis.2014.09.005
Caggianiello, G., Kleerebezem, M. and Spano, G. (2016). Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms. Appl. Microbiol. Biotechnol., 100; 3877–3886. https://doi.org/10.1007/s00253-016-7471-2
Chavant, P., Martinie, B., Meylheuc, T., and Bellon-Fontaine, M.N. (2001). Listeria monocytogenes LO28: Surface physicochemical properties and ability to form biofilms at different temperatures and growth phases. Appl. Environ. Microbiol., 68; 728–737.
Christensen, G. D., Simpson, W. A., Bisno, A. L. and Beachey, E. H. (1982). Adherence of slime–producing strains of Staphylococcus epidermidis to smooth surfaces. Infect. Immun., 37; 318–26.
Etesami, H. (2018). Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: mechanisms and future prospects. Ecotoxicol. Environ. Saf., 147; 175-191. https://doi.org/10.1016/j.ecoenv.2017.08.032
Fleming, H. C. and Wingender, J. (2001). Relevance of microbial extracellular polymeric substances (EPSs) – Part I: Structural and ecological aspects. Water Sci. Technol., 43; 1-8. https://doi.org/10.2166/wst.2001.0326
Fosso-Kankeu, E., Mulaba-Bafubiandi, A. F. (2014). Implication of plants and microbial metalloproteins in the bioremediation of polluted waters: a review. Phys. Chem. Earth, 67; 242-252.
Guo, H., Luo, S., Chen, L. and Xiao, X. (2010). Bioremediation of heavy metals by growing hyperaccumulator endophytic bacterium Bacillus spL14. Bioresour. Technol., 101; 8599–8605. https://doi.org/10.1016/j.biortech.2010.06.085
Hassen, A., Saidi, N., Cherif, M. and Boudabous, A. (1998). Resistance of environmental bacteria to heavy metals. Bioresour. Technol., 64; 7-15.
Kinoshita, H., Sohma, Y., Ohtake, F. and Ishida, M. (2013). Biosorption of heavy metals by lactic acid bacteria and identification of mercury binding protein. Res. Microbiol., 164(7); 701-709. https://doi.org/10.1016/j.resmic.2013.04.004
Leriche, V. and Carpentier, B. (2000). Limitation of adhesion and growth of Listeria monocytogenes on stainless steel surfaces by Staphylococcus sciuri biofilms. J. Appl. Microbiol., 88; 594–605. https://doi.org/10.1046/j.1365-2672.2000.01000.x
Lewis, S. J., Gilmour, A., Fraser, T. W. and Mccall, R. D. (1987). Scanning electron microscopy of soiled stainless steel inoculated with single bacterial cells. Int. J. Food Microbiol., 4; 279–284. https://doi.org/10.1016/0168-1605(87)90002-X
Mathur, T., Singhal, S., Khan, S. and Upadhyay, D.J. (2006). Detection of biofilm formation among the clinical isolates of Staphylococci: an evaluation of three different screening methods. Indian J. Medical Microbiol., 24; 25-9. http://dx.doi.org/10.4103/0255-0857.19890
Monsan, P., Bozonn, E. T., Albenn, E. C. and Joucla, G. (2001). Homopolysaccharides from lactic acid bacteria. Int. Dairy J., 11; 675. https://doi.org/10.1016/S0958-6946(01)00113-3
Mozes, N., Léonard, A. J. and Rouxhet, P. G. (1988). On the relations between the elemental surface composition of yeasts and bacteria and their
Ait-Meddour A., et al.
Pollution is licensed under a "Creative Commons Attribution 4.0 International (CC-BY 4.0)"
304
charge and hydrophobicity. Biochim. Biophys. Acta Biomembr., 945; 324-334. https://doi.org/10.1016/0005-2736(88)90495-6
Ncibi, M. C., Mahjoub, B. and Seffen, M. (2008). Study of the biosorption of chromium (VI) by a Mediterranean biomass: Posidonia oceanica (L) delile (Paper in French). Rev. Sci. Eau, 21(4); 441-449. https://doi.org/10.7202/019166ar
Neu, T.R., Swernhone, G.D.W. and Lawrence, J.R. (2001). Assessment of lectin binding analysis for in situ detection of glycoconjugates in biofilms systems. Microbiol., 147; 299–313. http://dx.doi.org/10.1099/00221287-147-2-299
O’toole, G. and Kolter, R. (1998). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol., 30; 295-304.
Ozturk, S. and Aslim, B. (2008). Relationship between chromium (VI) resistance and extracellular polymeric substances (EPS) concentration by some cyanobacterial isolates. Environ. Sci. Pollut. Res., 15(6); 478-480. https://doi.org/10.1007/s11356-008-0027-y
Ozturk, S., Kaya, T., Aslim, B. and Tan, S. (2012). Removal and reduction of chromium by Pseudomonas spp. and their correlation to rhamnolipid production. J. Hazard. Mater., 231; 64–69. https://doi.org/10.1016/j.jhazmat.2012.06.038
Pieniz, S., de Moura, T. M., Vaz Cassenego, A. P. and Andreazza, R. (2015). Evaluation of resistance genes and virulence factors in a food isolated Enterococcus durans with potential probiotic effect. Food Control, 51; 49-54. https://doi.org/10.1016/j.foodcont.2014.11.012
Priya, K., Roja, K., Priya, A. S. and Arvind, S. (2013). Detoxification and bioremediation of chromium (VI) from the tannery effluents. Int. J. ChemTech Res., 5; 2177-2185.
Rafaat, M. Elsanhoty, I.A. Al-Turki, and Ramadan, M.F. (2016). Application of lactic acid bacteria in removing heavy metals and aflatoxin B1 from contaminated water. Water Sci. Technol., 74 (3); 625–638. https://doi.org/10.2166/wst.2016.255
Rizzi, V., D'agostino, F., Fini, P. and Semeraro, P. (2017). An interesting environmental friendly cleanup: The excellent potential of olive pomace for disperse blue adsorption/desorption from wastewater. Dyes Pigments, 140; 480-490.
Schut, S., Zauner, S., Hampel, G., Kӧnig, H. and Claus, H. (2011). Biosorption of copper by wine relevant lactobacilli. Int. J. Food Microbiol., 145; 126-131.
Sedláček, I., Švec, P. and Kukletová, M. (2010). Slime production and adhesion properties among Lactobacilli isolated from dental caries. In Proceedings of the 12th – International Conference on Culture Collections (ICCC12).
Shakoori, A. R., Makhdoom, M. and Haq, R. U. (2000). Hexavalent chromium reduction by a dichromate resistant Gram-positive bacterium isolated from effluents of tanneries. Appl. Microbiol. Biotechnol., 53(3); 348–351. https://doi.org/10.1007/s002530050033
Srinath, T., Verma, T., Ramteke, P.W. and Garg, S.K. (2002). Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere, 48; 427–435.
Staudt, C., Horn, H., Hempel, D. C. and Neu, T. R. (2004). Volumetric measurements of bacterial cells and extracellular polymeric substance glycoconjugates in biofilms. Biotechnol. Bioeng., 88; 585–592. https://doi.org/10.1002/bit.20241
Stepanovic, S., Vukovic, D., Dakic, I. and Savic, B. (2000). A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J. Microbiol. Methods, 40; 175–179.
Sutherland, I. W. (2001). Microbial polysaccharides from Gram-negative bacteria. Int. Dairy J., 11; 663-674. https://doi.org/10.1016/S0958-6946(01)00112-1.
Whitfield, C. and Roberts, I. S. (1999). Structure, assembly and regulation of expression of capsules in Escherichia coli. Mol. Microbiol., 31; 1307-1319.
Zhou, Y. F. and Haynes, R. J. (2010). Sorption of heavy metals by inorganic and organic components of solid wastes: significance to use of wastes as low-cost adsorbents and immobilizing agents. Crit. Rev. Environ. Sci. Technol., 40(11); 909-977.