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ABSTRACT: Due to an increase in demand of petroleum products which are transported 
by vessels or exported by pipelines, oil spill management becomes a controversial issue in 
coastal environment safety as well as making serious financial problems. After spilling oil 
in the water body, oil spreads as a thin layer on the water surface. Currents, waves and wind 
are the main causes of oil slick transport. These phenomena depend on the overall 
interaction among gravity, viscosity, surface tension and interfacial tension of oil in water 
bodies. In the current study, Artificial Neural Network (ANN) models have been designed 
and trained for the prediction of oil spreading and advection under different hydrodynamic 
conditions. In this regard, results obtained from a multiphase Lagrangian numerical model 
are deployed to train ANN model. The mentioned numerical model which is based on the 
moving particle semi-implicit (MPS) method is developed in the earlier stage of the study.  
In this research study, the MPS numerical model is first validated and verified against the 
analytical formulas which are based on experimental data cited in the literature. Then, 
various hydrodynamic conditions and oil spill scenarios were chosen to obtain different 
numerical model results. Finally, numerical model results are then deployed for training 
ANN model to provide a useful tool for urgent prediction of oil slick trajectory in order to 
manage the oil slick transport in the coastal environments. 

Keywords: Neural network, Numerical modeling, Oil spill, Pollution transport, Marine 
environment. 

 
 
 
INTRODUCTION 
The oil spill is a serious problem in coastal 

areas, it may pose significant threats to 

marine environments and people’s health and 

can pollute vessels and harbor facilities in 

beaches or near-shore regions. 

Simultaneously, adequate preparedness of 

harbor and maritime authorities to potential 

oil spills requires significant material and 

human resources (den Boer et. al., 2014; 

Weng, 2017). The trajectory of a particular 

spill is of fundamental importance since it 
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determines the influence of oil on coastal 

regions and on other delicate wildlife. 

Prediction of an oil slick transport can be 

useful for taking the proper actions in the 

management and removal of pollutions. 

When oil spilled on the surface of water 

bodies, it spreads as a thin diaphragm the so-

called oil slick. An imbalance in the force 

between gravity, viscosity and surface 

tension and oil-water interfacial tension 

controls the direction of oil spreading 

(Imanian et al., 2017). Numerical modeling 

of oil spill is an essential tool to predict the 
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fate and transport of oil slick under different 

hydrodynamic conditions for supervising and 

controlling of produced pollutions. Two 

approaches for computing oil slick 

trajectories and simulating fluid flow are 

normally used in different research studies 

including Lagrangian and Eulerian 

approaches. Researchers have developed 

several methods to simulate fluid flow based 

on the Eulerian mesh-based formulation 

(Sarhadi Zadeh & Hejazi, 2012; Barrios, 

2016; Verma, 2016). Some other researchers 

preferred to apply mesh-less methods (De 

Dominicis et. al., 2013 & 2016; Ratherford 

et. al., 2015; Golshan et al., 2018). The 

comparison of results obtained from Eulerian 

and Lagrangian approaches showed that the 

particle-based approaches can well represent 

the location of oil slick. Moreover, it can 

predict the oil slick breakage due to the flow 

pattern (Nagheeby & Kolahdoozan, 2010; 

Rowshan et al., 2007). 

One of the most important particle-based 

methods is moving particle semi-implicit 

(MPS). MPS which was introduced 

originally by Koshizuka & Oka (1996) and 

has applied in a wide range of engineering 

applications such as free surface water 

waves, phase transitions, multiphase flow, 

elastic structures, and sediment-laden flows. 

Governing equations in the MPS method are 

transformed into particle interactions, also 

grids are not used in this approach; therefore, 

large scale deformations of interfaces can 

simply be simulated. In this method fluid and 

solid are treated as separate phases and 

governing equations of momentum and 

continuity are solved for them concurrently. 

Recently, researchers were developed a large 

number of models to economize time and 

cost. One of the most accurate and simplest 

models without professional mathematical 

equations in different fields is the artificial 

neural network (ANN) model (Huang et al., 

2010, Rajasekaran & Bharadwaj, 2012, 

Singha et al., 2013, Zhang et al., 2015, Xu et 

al., 2016, Song et al., 2017). ANN is a 

relatively new technology based on the 

process of the biological brain and it has 

many human-like qualities (Kohonen, 1989). 

As a quick response from governments is 

required in situations of marine pollution due 

to oil spills (Liu et. al., 2011; Gallego et. al., 

2018), ANN models are highly applicable in 

environmental monitoring, assessment, 

forecasting and management (Acciani et al., 

2003; Booty et al., 2001; Gumrah et al., 

2000; Liao et al., 2012; Palani et al., 2008). 

In the current study, ANN models were 

designed and developed to predict oil slick 

spreading and transport in the marine 

environment. With the developed ANN 

models, fast tools are prepared to manage 

necessary activities to preserve marine 

waters from hazardous impacts. 

Herein, a MPS model which was 

originally developed by Imanian et al. 

(2011) is deployed and verified against 

several test cases. Then, the model applied 

to simulate a multiphase system (water and 

oil) with different oil properties under 

various hydrodynamic conditions. To 

prepare necessary data for the ANN model, 

different scenarios were executed by the 

developed numerical model and a wide 

range of test results were obtained. The 

prepared dataset was then deployed to train 

and test the ANN models. 

MATERIAL & METHODS 
Numerical method of solving governing 

equations and details of artificial neural 

network is described. 

Governing equations for incompressible 

viscous fluid flows are continuity and 

momentum equations given as follows 

(Monaghan, 1994): 

1/ . / . 0 ρ Dρ Dt u  (1) 

2/ 1/     tDu Dt ρ P ν u f  (2) 

where 𝑢⃗ = velocity, 𝑡= time, 𝜌= fluid 

density, 𝑃= pressure, 𝜈𝑡= turbulent 

viscosity and 𝑓= body forces. 

In the MPS modeling, differential 

governing equations are needed to be 
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converted to equations stating the particle 

interactions. The particle interactions are 

based on the Kernel function which is used 

as: 
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where 𝑟= the distance between two particles, 

and 𝑟𝑒= the cutoff of efficient radius. 

Gradient is evaluated between two 

adjacent particles and is expressed as 

(Koshizuka et al., 1998): 

   

0

2

/ .

/ . .


 

     
  

i

'

j i j i j i j i

i j

d n

  r r r r W r r
 (4) 

where  𝜙= physical quantity, 𝑛0= the 

standard density, 𝑑= number of space 

dimension, 𝑟𝑖= location vector for particle 𝑖, 
and 𝜙′= minimum amount of 𝜙 in the 

neighboring particles in the efficient radius. 

The Laplacian model in the MPS 

method has a conservative form as 

(Koshizuka et al., 1998): 

   2 02 / . .


      
 i j i j i

j i

d n λ w r r  (5) 

In this study, a 2D MPS model is 

deployed as a numerical tool for modeling 

the oil slick transport in the water body. 

Governing equations of oil-water flow are 

then discretized using MPS method and 

numerically solved. Then, ANN capability 

is examined for predicting oil slick 

spreading and advection. 

Over the last few decades, one particular 

machine learning technology known as 

artificial neural networks has been 

successfully applied to a wide range of 

engineering problems (Lee, 2018). An 

artificial neuron is a model inspired by the 

human brain neurons. In this study, a widely 

used ANN with the use of Back Propagation 

(BP) algorithm was deployed. BP algorithm 

was used in Feed-Forward artificial neural 

network system which calculates from the 

input layer over hidden layers to the output 

layer. The first step in the training process of 

BP neural networks is assembling training 

data and then creating a network object. A 

two-layer feed-forward network with tan 

sigmoid transfer function in the hidden layer 

and linear output transfer function is trained 

with Levenberg-Marquardt BP algorithm 

(see Figure 1). 

 

Fig. 1. Schematic of feed-forward back propagation artificial neural network 

This algorithm was created to approach 

second-order training speed without having 

to compute the Hessian matrix. The 

performance function is a sum of squares 

as typical in training feed-forward 

networks, then the Hessian matrix and 

gradient can be computed as (Khataee & 

Kasiri, 2010): 

 TH J J  (6) 
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where 𝐽= the Jacobian matrix which 

contains first derivatives of the network 

errors regarding the weights and biases, 

and 𝑒= a vector of network errors. 

The Jacobian matrix can be calculated 

through a standard back-propagation 

technique that is simpler than calculating 

the Hessian matrix. Feed-forward ANN is a 

layered network which means the artificial 

neurons are arranged in layers and emitted 

the signals forward, but their errors 

propagated backward. All neurons in a 

specific layer are connected to all neurons 

of the adjacent layer in feed-forward neural 

network. This is one of the most popular 

and simplest learning algorithms with a 

high level of performance for complicated 

and multi-layered networks. Errors in this 

method would be reduced since the ANN 

has been learned through training data. 

ANNs are able to learn from different 

datasets including numerical modeling data 

without knowledge of the real rules that 

govern the system. It is apparent from 

results that the prediction of ANN was 

improving through training network with 

different sets of models. 

RESULTS & DISCUSSION 
In this part, the numerical MPS model is 

verified against analytical formulas to 

validate its performance in the 

hydrodynamic domain and in two-phase oil 

pollution interaction. To verify the 

hydrodynamic model in the presence of 

waves, numerical tests are conducted in a 

wave flume, and a piston wave-maker is 

located at the beginning of the flume to 

generate a regular wave train. To calculate 

wavelength, the dispersion equation is 

deployed as follows (Dean & Dalrymple, 

1991): 

 
2

2 / =gk(tanh(kh))π T  (8) 

where 𝑘= the wave number= 2π/L, ℎ = 

water depth, 𝑇= wave period and 𝐿= wave 

length. 

The wave height for a defined 

wavelength and wave-maker amplitude 

determined as (Dean & Dalrymple, 1991): 

 / =2 2 1 / 2 2 H S Cosh  kh Sinh  kh kh  (9) 

where 𝐻= wave height and 𝑆= paddle 

stroke. 

It should be mentioned that numerical 

models that are used in this paper are 

modeled in shallow (h/L <0.05) and 

transitional (0.05<h/L <0.5) waters. 

The regular and non-breaking wave is 

generated in a 10.5 m flume with 1 m 

water depth; the wave-maker paddle stroke 

amplitude is 50 cm with a period of 3 s. In 

this numerical model, 4683 particles with 

4.7 cm diameter are used. A sensitivity 

analysis was carried out to obtain the 

suitable value for the time step and in this 

regards it was found that 0.003 second is 

appropriate. The wave height and length 

resulted from numerical modeling are 0.27 

m and 8.6 m respectively illustrated in 

Figure 2. 

 

Fig. 2. The wave generated by the wave-maker 
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Alternatively, using analytical formulas 

(equations 8 and 9), wave height and 

length are 0.33 m and 8.69 m respectively. 

Comparing these two sets of results 

represent 1% and 18% difference in 

wavelength and wave height predictions 

respectively. Interestingly, it can be 

concluded that the numerical model has a 

reasonable agreement with the analytical 

result in computing wavelength. 

The existence error in calculating the 

wave height is because of the difference 

between the basic formulations in the 

numerical model and analytical formula. 

The analytical formula for wave height is 

based on Euler equation, fluid in this 

equation is considered ideal, then the shear 

tensions and viscosity are become 

neglected (Dean & Dalrymple, 1991). In 

the present numerical model, governing 

equations are based on Navier-Stokes 

equations which consider shear stresses in 

fluid flow. The effect of shear stresses and 

viscosity of fluid is to damp the wave 

energy and consequently to decrease the 

wave height. 

To represent the applicability of the 

MPS model for simulation of fluid flow in 

open channels, a critical flow simulation is 

described herein. It is important to know as 

wind and tidal currents are also primary 

factors in marine environments, they affect 

marine environments by producing 

currents (surface currents and tidal 

currents). Consequently, their impacts have 

been considered in the form of currents in 

this paper.  

In this case study, a broad crested weir 

with 2 m length and vertical framework in 

both sides is modeled in a 7.5 m channel 

(at 𝑥=5 m). Both static head of water above 

weir’s crest and weir’s height are 1 m. 

Also, the water depth is 2 m and fluid 

inflow (current) velocity is set to 0.45 

cm s⁄ . For numerical modeling purposes, 

4991 water particles with 5 cm diameter 

are modeled with the time step set to 0.005 

seconds. The discharge in control section 

calculated by equation 10 is 0.0819 m3 s⁄ . 

3
21.705 

d v cQ C C kb H  (10) 

where 𝑄= the discharge in the control 

section, 𝐶𝑑= flow coefficient, 𝐶𝑣= velocity 

coefficient, 𝐾= submergence coefficient 

presented by Ranga Ranju (1993), 𝑏𝑐= 

channel width and 𝐻′= height of weir. 

Since 𝑞 is the inflow in unit width, 

critical depth in rectangular sections can be 

computed as: 

23 /cy q g  (11) 

where 𝑦𝑐= critical depth which is formed 

on just the beginning of the weir or in the 

control section and 𝑔= gravitational 

acceleration. 

The critical depth obtained from 

equation 11 is 0.649 m, which is in a good 

agreement with the model result which is 

0.65 m illustrated in Figure 3. 

 

Fig. 3. Critical depth formed on the broad crested weir 
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With the above two test cases, it can be 

concluded that the numerical MPS model 

can well predict the fluid flow in both 

wave and current conditions. Herein, the 

developed MPS model is applied in some 

cases to validate its performance in oil 

pollution transport in the marine 

environment. For this purpose, the 

developed two-phase MPS model is 

applied to simulate oil slick spreading on 

the water surface and its advection due to 

waves and currents. 

Spreading is one of the most significant 

processes during the early stage of the oil 

spill. This process is the horizontal 

expansion of oil slick. In the oil spill 

process, as soon as oil releases into the 

water body, it starts to spread non-

uniformly. The principal force behind the 

initial spreading of oil is its weight. Oil 

slick spreads over the water surface due to 

a balance between gravitational, viscous 

and surface tension forces, while the 

composition of the oil changes from the 

initial time of the spill (Wang et al., 2005). 

Fay (1971) suggested that oil slick 

spreading passes through three stages; in 

the first stage, gravity and inertial forces 

are balanced and they control oil slick 

spreading across the water surface. In the 

second stage, the inertial forces are 

neglected to compare with the viscous drag 

force across the surface. In the third phase, 

interfacial forces become dominant and 

provide the driving force for the spreading 

phenomena. Thus, at equilibrium, the 

floating oil could spread across the surface 

or it could form a lens. The gravity-viscous 

(𝑔 − 𝑣) spreading regime is represented as 

(Fay, 1971): 

 
1/4

2 3/2 1/21.39 

  eg v wL gA t ν  (12) 

where 𝐿𝑒= increasing length of the oil 

slick, 𝐴= half volume of the oil per unit 

length of oil slick, 𝜈𝑤= kinematic viscosity 

of water, 𝛥 = 1 − (𝜌𝑜 𝜌𝑤⁄ ), 𝜌𝑤 and 𝜌𝑜= 

water and oil density respectively. 

Since these empirical equations have 

been obtained from experimental tests, the 

results obtained from these verifications 

are accordingly achieved from 

experimental data. Numerical tests are 

carried out to investigate the oil slick 

spreading in wave flumes. In each test, a 

regular and non-breaking wave generated 

by the wave-maker situated at the 

beginning of the flume causes the oil slick 

to move on the water surface. Flume, wave 

and oil slick specifications are presented in 

Table 1. The comparison of computed oil 

slick length using the deployed MPS model 

and Fay (1971) empirical relationship 

results (equation 12) for 3 cases are 

illustrated in Figure 4. 

In case (a) oil slick consist of 400 

particles with 3.75 cm diameter, in case (b) 

it consists of 285 particles with 3.5 cm 

diameter and in case-c oil slick consists of 

215 particles with 3.5 cm diameter. 

From Figure 4 it can be concluded that 

the length of oil slick in both numerical 

models and Fay’s empirical formula is 

increased by time. In three cases, Fay’s 

empirical relationship resulted more oil 

spreading than the numerical model. In 

fact, the trend for both models in each 

graph of three case studies is almost the 

same. Regarding Figure 4, in the case (a), 

there is a little difference between the 

empirical formula and MPS model, but in 

case-b this difference increases. The 

variability of these cases is because of the 

wave period. With increasing the wave 

period, oil slick spreads more rapidly and 

results of numerical MPS model become 

closer to the results obtained through Fay’s 

empirical formula. 

The error analysis of comparing MPS 

numerical results and Fay’s empirical 

formula in different cases are presented in 

Table 2. 
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Table 1. Flume, water and oil slick specifications in oil slick spreading model verification 

Case 
Flume Properties Wave Properties Oil Slick Properties 

length(m) depth(m) height(m) period(s) length(m) viscosity(m2/s) density(kg/m3) 

a 15 0.6 0.6 2.11 4.65 0.085 850 

b 15 0.5 0.73 1.73 3.4 0.085 800 

c 13.5 0.55 0.62 2 4.22 0.085 800 

 

 

Fig. 4. Comparison of numerical results and Fay (1971) empirical formula for oil slick spreading 

Table 2. Error analysis of numerical and empirical results of oi slick spreading 

Case RMSE NMSE 

a 0.0788 0.0254 

b 0.1935 0.2473 

c 0.1362 0.0900 

 

Error values of root mean square error 

(RMSE) and normalized mean square error 

(NMSE) show that the numerical model is 

capable to predict oil spreading and 

numerical simulation is validated. 

Moreover, it can be seen that error 

values for case a, which is related to the 

larger wave period (according to Table 1), 

is less than other cases. At the same time, 

error values for case b, which is related to 

the smaller wave period, is more than 

others. This can be explained by the fact 

that for the larger wave period, oil slick 

spreads more rapidly, which in turn causes 

results of numerical simulation and 

empirical formula became closer to each 

other. 

A wide range of natural substances such 

as plants, animals or mineral origins, as 

well as a range of synthetic compounds is 

described with oil. Therefore, each type of 

oil or petroleum product has unique 
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properties. One of the main physical 

properties which affect the behavior of oil 

in the water body is the oil density and it 

depends on the oil chemical compositions. 

Comprehending the distribution nature of 

sources and their inputs, as well as the 

behavior of petroleum in the environment, 

are the keystone to understand the impacts 

of petroleum on marine environments. 

Numerical tests are carried out to 

investigate the density effects on oil slick 

spreading due to wave-induced currents. 

Flume, wave and oil slick specifications for 

two tests are presented in Table 3. In 

addition, in the first case, oil slick consists 

of 511 particles with 2.75 cm diameter and 

in the second one; oil slick consists of 125 

particles with 4 cm diameter. The time step 

is 0.001 second for both cases. Moreover, 

the variation of oil slick length is 

demonstrated with time in Figure 5. 

Table 3. Flume, wave and oil slick specifications in the investigation of oil density effect 

Case 
Flume characteristics Wave Properties Oil Slick Properties 

length(m) depth(m) height(m) period(s) length(m) initial length(m) viscosity(m2/s) 

1 13.5 0.55 0.438 2.033 4.3 2 0.085 

2 11.1 1 0.888 2.5 6.99 1 0.085 

 

Fig. 5. Time variation of oil slick length for different oil densities 

Figure 5 shows that in case (a) the rate 

of oil slick length increase is 4.7 cm/s for 

oil density of 800 kg/m3; while this 

parameter is 3.8 and 1.8 cm/s for oil 

density of 850 and 900 kg/m3, respectively. 

With the same trend in case (b), the slick 

length growth rate for 800 kg/m3 oil 

density is 9.5 cm/s in comparison with 5.4 

cm/s for oil with a density of 950 kg/m3. 

It can be concluded that with increasing 

the oil density, the spreading process 

occurred more slowly. Also, the gradient of 

oil slick spreading length in oil with a 

higher density is less than oil with lighter 

density. It means that the length of oil slick 

in lighter oil increases more rapidly 

compared to heavy oil. In both models, the 

initial length of oil slick for different types 

of oil is the same but oil with lower density 

spreads faster than oil with heavier density. 

Results of numerical MPS models 

indicate that density of oil plays a major 

role in spreading phenomenon and it 

affects the rate of spreading in marine 

environments, also wave period may play a 

significant role in the oil slick spreading. 

Other important processes in oil slick 

transport are advection and turbulent 

diffusion. Oil particles are transported in 

the water surface mainly as the effect of 

wind, surface currents, and waves. The 

advection velocity of oil slick 𝑈𝑑= is 

described as (Al-Rabeh et al., 1992; Chao 

et al., 2001; Chao et al., 2003): 

 d t t w windU K U K U  (13) 
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where 𝑈𝑤𝑖𝑛𝑑= wind velocity at a height of 

10 m above the water surface, 𝑈𝑡= surface 

velocity and 𝐾𝑡 𝑎𝑛𝑑 𝐾𝑤 = current and wind 

drift factor equals 1 and 0.03 respectively. 

The turbulent diffusion transport and 

calculation of velocity components are 

commonly gained from a homogeneous 

random walk procedure. Distance ∆𝑆 

through which a particle travels by 

horizontal diffusion and can be expressed 

as (Al-Rabeh et al., 1992; Chao et al., 

2001; Chao et al., 2003): 

1

0[ ] 12  hS R D t  (14) 

where [𝑅]0
1= random number between 0 to 

1, 𝐷ℎ= horizontal diffusion coefficient and 

∆𝑡= time step. 

They also described the displacement of 

oil slick due to advection and horizontal 

turbulent diffusion as follows (Al-Rabeh et 

al., 1992): 

1

0(2 ]   x dxL U t S cos π R  (15) 

1

0(2 ]   y dyL U t S sin π R  (16) 

where 𝐿𝑥 and 𝐿𝑦= the displacements of the 

oil slick in the 𝑥 and 𝑦 directions 

respectively, 𝑈𝑑𝑥 and 𝑈𝑑𝑦= advective 

velocity components in the 𝑥 and 𝑦 

directions respectively. The new position 

for each particle at a new time step will be 

the summation of the previous location 

coordinate and computed displacement. 

A 3 m long flume with a water depth of 

50 cm is considered to simulate oil slick 

advection in two cases. The oil slick with 

50 cm length and 10 cm thickness is spilled 

in the water at 𝑥=1.5 m from the beginning 

of the channel and monitored for 10 

seconds. The density and viscosity of the 

oil are 850 kg cm3⁄  and  0.08 m2 s⁄ , 

respectively and oil slick is divided into 39 

particles with a diameter of 3.9 cm. Results 

obtained from multiphase MPS models are 

then compared with Chao et al., (2003) in 

Figure 6. The inflow velocity is considered 

4.5 and 5 cm s⁄  in case (a) and (b), 

respectively. Other parameters are the 

same in two cases. 

    

Fig. 6. Comparison of numerical results and Chao et al. (2003) formula for oil slick advection 

Figure 6 represents the same trend in 

both oil slick transport value obtained from 

the developed model and Chao et al., 

(2003) formula (equation 14). The 

difference between calculated oil slick 

displacement in the numerical model and 

displacement value (∆𝑠) obtained from 

theoretical formula (with 𝐷ℎ = 0.1 ) for 

case (a) and case (b) are 9.1 % and 9.8%, 

respectively. Theoretical equations are 

simulated according to experimental data; 

thereby, results obtained from the 

mentioned equations are accordingly based 

on experimental datasets. The location of 

oil slick in different time steps is calculated 

and illustrated in Figure 7 for two cases. 
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Fig. 7. Oil slick trajectory obtained from developed MPS model 

The details of designed Artificial Neural 

Network model are presented in the 

following sections. 

The arrangement or relative situation of 

cells in the network such as numbers, 

groups, and connections type is called the 

network’s topology. The topology of ANN 

shall be optimized; this step plays an 

important role in the development of the 

network. In the current study, the 

hyperbolic tangent function is preferred to 

other activation functions such as logistic 

function. The hyperbolic tangent function 

has a limiting value of -1 to +1 and 

represents as follows (Bar et al., 2010): 

   tanh ( ) /   x x x xx e e e e  (17) 

For the output layer, a linear activation 

function is deployed as a transfer function 

(Bar et al., 2010): 

 Y x b  (18) 

where 𝑏= the bias term that processes the 

element of the output layer each of which 

accumulates the weighted connections 

from the hidden layer. 

Details of given herein for design and 

development of artificial neural network 

models to predict oil spill spreading related 

to currents and wave-induced currents.  

The first step in the ANN model 

development process presented here is the 

choice of appropriate model outputs (i.e. 

the variables to be predicted) and a set of 

potential model input variables from the 

available data. Although ANNs are data-

driven models, it is up to the modeler to 

choose which input variables should be 

considered as part of the model 

development process. This can be done 

based on a priori knowledge and/or the 

availability of data (Maier et al., 2010; Li 

et al., 2015). Herein, the input data 

includes channel geometry, oil slick 

thickness and length, and oil viscosity and 

density. Also, various hydrodynamic 

conditions, wave characteristics and 

current velocities are considered to have a 

comprehensive train of the ANN. Training, 

analyzing and testing data have been 

clarified by sensitivity analysis, correlation 

coefficient and mean square error. 

According to ANN model rules, the first 

stage is preparing necessary data to train, 

validate and test the model. In this regard, 

numerical experiments were carried out by 

the use of the developed MPS numerical 

Case - a 

Case - b 
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model. The network was created using a 

two-layer, feed-forward neural network 

with tan-sigmoid transfer function in the 

hidden layer and linear transfer function in 

the output layer. This kind of topology is 

useful for function approximation and 

regression problems. 

For defining the number of neurons in 

hidden layer, trial and error methods have 

been applied. The Neural Network has been 

repeatedly trained till the mean square error 

reaches its minimum. Additionally, the 

validation of the ANN can be determined 

through regression analysis and the 

correlation between output data and target 

data. Therefore, based on the number of 

analyses, 15 hidden neurons were selected 

for modeling purposes. The performance of 

the ANN model is then determined using 

mean square error (MSE) and correlation 

factor (R) which can be represented 

mathematically as follows (Bar et al., 2010): 

 
2

1

1/ .


 
N

i i

i

MSE N x y  (19) 
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In the current study, two individual 

ANN models were developed for i) 

prediction of oil slick spreading in the 

presence of waves and ii) oil slick 

advection in the presence of currents. To 

train the ANN models, Levenberg-

Marquardt training algorithm was 

deployed. Input data in this research study 

for both ANN models are divided 

randomly into three categories according to 

sensitivity analysis results as follows: 

a. In the first category, 70 percent of 

input data are used for training ANN 

models. 

b. In the second category, 15 percent of 

input data are used for the validation 

process. In this group data, network 

generalization was examined. 

c. The remaining 15 percent of input data 

is used for model testing purposes. 

This stage represents the performance 

of the developed ANN model. 

The percentage of divided input data 

sets into 3 above categories can be changed 

in each epoch according to the 

performance of the ANN model. 

To develop an ANN model for oil 

spreading due to the waves, 124 case 

studies (resulted from developed numerical 

model) were designed. These case studies 

were chosen in a way to consider the 

variety of different parameters involved in 

the process i.e. oil properties, wave, and 

flume characteristics, etc. In Table 4, some 

samples (10 from 124 models) of input 

data such as length and depth of the 

channel, wave and oil slick properties for 

ANN modeling of oil spreading due to 

wave are summarized:  

Table 4. Flume, wave and oil slick specifications in 10 samples (from 124 datasets) in the model of oil slick 

spreading due to waves 

Case 
Flume characteristics Wave Properties Oil Slick Properties 

length(m) depth(m) height(m) period(s) length(m) Density(kg/m3) viscosity(m2/s) 

1 18 0.3 0.88 1.32 2 800 0.085 

2 15 0.45 1.25 1.47 2.65 850 0.0425 

3 17.3 0.5 1.03 1.57 3 800 0.085 

4 15.3 0.45 0.74 1.62 3 900 0.085 

5 15 0.5 0.73 1.73 3.4 850 0.045 

6 13.5 0.75 1.36 1.82 4.2 900 0.085 

7 15 0.4 0.34 2 3.7 950 0.0425 

8 12 0.5 0.34 2.25 4.65 800 0.085 

9 15 0.6 0.32 2.34 5.25 850 0.085 

10 11.1 1 0.88 2.5 6.99 950 0.045 
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The 124 datasets were normalized to 

train the ANN models. As mentioned 

before, based on the sensitivity analysis for 

the number of data needed to train the 

model, 70 percent of input data is selected. 

The remaining 30 percent of data is 

considered for validation and testing 

processes equally. Table 5 represents a 

summary of model results including MSE 

and R with the results showing in detail for 

each category of modeling such as training, 

validating and testing in Figures 8 and 9. 

Table 5. Performance of neural network in training, validation and testing stages for oil slick spreading 

Categories Samples MSE R 

Training 86 0.0085 0.992 

Validation 19 0.0165 0.982 

Testing 19 0.0245 0.966 

 

Fig. 8. Results of linear regression in the developed ANN model for oil slick spreading 

 

Fig. 9. The best performance of the developed ANN model for oil slick spreading in the presence of wave 
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Figure 9 shows that the training stage is 

stopped when a validation error is subjected 

to increase at epoch 4. In epoch 4, the mean 

square errors become minimize and it shows 

that the best performance of designed 

network has occurred at this epoch. If 

network training continues after epoch 4 (in 

this case), the network will be over trained. 

Overtraining of networks makes it worthless 

because the performance of ANN model 

will be decreased by this action. Although 

the MSE of training process tends to zero 

after passing epoch 4 the MSE value for 

validation and testing network will be 

increased. From Figure 9 it can be 

concluded that the developed ANN model 

can well predict the oil slick spreading due 

to waves. 

Applying the ANN model instead of 

employing time-consuming Lagrangian 

numerical models represents the 

applicability of the ANN for fast prediction 

of oil slick spreading in marine 

environments. 

To develop an ANN model for oil slick 

advection process due to currents, 92 case 

studies (resulted from developed numerical 

model) are designed. These case studies are 

chosen to cover a different aspect of oil 

slick, current properties, and channel 

specifications. In Table 6, some samples 

(10 from 92 models) of input data such as 

channel, current and oil properties for 

ANN modeling of oil slick advection due 

to currents are summarized. The 

parameters in Table 6 might be changed in 

each model; therefore, to develop an 

accurate artificial neural network model a 

wide range of various parameters shall be 

chosen. 

Again in the currently developed model, 

input datasets are randomly divided into 70 

percent for training, 15 percent for 

validating and 15 percent for testing 

purposes as a result of sensitivity analysis. 

Table 7 represents a summary of the model 

results with the details given in Figures 10 

and 11.  

Table 6. Flume, current and oil slick specifications in 10 samples (from 92 models) in the model of oil slick 

advection due to currents 

Case 
Flume characteristics Current Oil Slick Properties 

length(m) depth(m) Speed(cm/s) Density(kg/m3) viscosity(m2/s) 

1 9 2 0.4 800 0.085 

2 9 0.5 0.5 900 0.0425 

3 10.5 1.2 0.75 950 0.085 

4 9.75 1 1.5 850 0.085 

5 10.5 0.5 2 800 0.085 

6 12 0.4 4.5 800 0.085 

7 16.5 0.5 4.5 850 0.085 

8 9 1.5 5 950 0.0425 

9 15 0.4 5 900 0.0425 

10 10.5 0.5 6 800 0.085 

 

Table 7. Performance of neural network in training, validation and testing stages for oil slick advection 

Categories Samples MSE R 

Training 64 0.0011 0.999 

Validation 14 0.0281 0.996 

Testing 14 0.0322 0.997 
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Fig. 10. Results of linear regression in the developed ANN model for oil slick advection 

 

Fig. 11. The best performance of the developed ANN model for oil slick advection in the presence of 

current 

Training stage is stopped when 

validation error increased which occurred 

at epoch 3 (Figure 11) and the best 

validation performance occurred at epoch 

3. From Figure 11, it can be concluded that 

oil slick advection due to the presence of 

currents can be well predicted by the 

developed ANN model. 

According to results obtained from both 

ANN models, the ANN modeling approach 

can be well applied to oil spill phenomena 

in the marine environment. Results 

obtained through both currents and waves 

represent the performance of ANN 

modeling method in the prediction of oil 

slick transport for supervising oil spill 
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contamination in marine environments. 

The main output of the ANN model is 

managing oil spill accidents by prediction 

of location and situation of oil slick after 

passing time in marine environments. 

CONCLUSION 
In the current study, artificial neural 

networks were developed based on 

numerical dataset results to predict oil slick 

transport and spreading. Prediction of oil 

spill behavior is substantial to take a quick 

action to manage it and make a decision to 

remove the resulting pollutions from 

marine environments. In conclusion, as the 

computational time for ANN modeling is 

much less than both numerical models of 

hydrodynamics and oil slick transport, one 

can be concluded that the earlier one is 

faster in case of real problems which is 

more suitable for the real-time 

management of oil slick spreading. In other 

words, the most significant advantage of 

using ANN models to predict phenomena 

than other numerical models is; by using 

ANN models, results have been acquired 

very quickly but numerical models need 

more time to obtain results. 
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