Abu Bakar, A. F., Yusoff, I., Fatt, N. T., Othman, F. and Ashraf, M. A. (2013). Arsenic, zinc, and aluminium removal from gold mine wastewater effluents and accumulation by submerged aquatic plants (Cabomba piauhyensis, Egeria densa, and Hydrilla verticillata). Biomed Res. Int., 2013; 1-7.
Ajayi, T. O. and Ogunbayio, A. O. (2012). Achieving Environmental Sustainability in Wastewater Treatment by Phytoremediation with Water Hyacinth (Eichhornia Crassipes). J. Sustain. Dev., 5(7); 80–90.
Akinbile, C. O. and Yusoff, M. S. (2012). Assessing water hyacinth (Eichhornia crassopes) and lettuce (Pistia stratiotes) effectiveness in aquaculture wastewater treatment. Int. J. Phytoremediation, 14(3); 201–211.
APHA. (2005). Standard methods for the examination of water and wastewater.
Axtell, N. R., Sternberg, S. P. K. and Claussen, K. (2003). Lead and nickel removal using Microspora and Lemna minor. Bioresour. Technol., 89(1); 41–48.
Azeez, N. M. and Sabbar, A. A. (2012). Efficiency of duckweed (Lemna minor L.) in phytotreatment of wastewater pollutants from Basrah oil refinery. J. Appl. Phytotechnology Environ. Sanit., 1(4); 163–172.
Breiman, L. (2001). Random forests. Mach. Learn., 45(1); 5–32.
Pollution, 6(2): 427-438, Spring 2020
435
Daud, M. K., Ali, S., Abbas, Z., Zaheer, I. E., Riaz, M. A., Malik, A., Hussain, A., Rizwan, M., Zia-Ur-Rehman, M. and Zhu, S. J. (2018). Potential of Duckweed (Lemna minor) for the Phytoremediation of Landfill Leachate. J. Chem., 2018.
Favas, P. J. C. and Pratas, J. (2013). Uptake of uranium by native aquatic plants: Potential for bioindication and phytoremediation. E3S Web Conf., 1; 2–4.
Govindaraju, R. S. (2000). Task Committee on Application of Artificial Neural Networks in Hydrology, Artificial Neural Networks in Hydrology. II:Hydrologic Application. J. Hydrol. Eng., 5(2); 124–136.
Hadiyanto, M. C., Soetrisnanto, D. and Christwardhana, M. (2013). Phytoremediations of palm oil mill effluent (POME) by using aquatic plants and microalgae for biomass production. J. of Environ. Sci. Technol., 6(2); 79-90.
Ho, T. K. (1995). Random decision forests. Proc. 3rd Int. Conf. Doc. Anal. Recognit., 1; 278–282.
Kamal, M., Ghaly, A. E., Mahmoud, N. and Cote, R. (2004). Phytoaccumulation of heavy metals by aquatic plants. Environ. Int., 29(8); 1029-1039.
Kumar, M., Ranjan, S. and Tiwari, N. K. (2018). Oxygen transfer study and modeling of plunging hollow jets. Appl. Water Sci., 8(5); 1–15.
Kutty, S. R. M., Ngatenah, S. N. I., Isa, M. H. and Malakahmad, A. (2009). Nutrients Removal from Municipal Wastewater Treatment Plant Effluent using Eichhornia Crassipes. World Acad. Sci. Eng. Technol., 60; 826–831.
Li, S., Wang, L. and Chen, P. (n.d.). The Effects of Purifying Livestock Wastewater by Different Aquatic Plants. 2013 Int. Conf. Mater. Renew. Energy Environ., 2; 649–652.
Mashaly, A. F. and Alazba, A. A. (2019). Assessing the accuracy of ANN, ANFIS, and MR techniques in forecasting productivity of an inclined passive solar still in a hot, arid environment. Water SA, 45(2); 239.
Mishra, S., Mohanty, M., Pradhan, C., Patra, H. K., Das, R. and Sahoo, S. (2013). Physico-chemical assessment of paper mill effluent and its heavy metal remediation using aquatic macrophytes - A case study at JK Paper mill, Rayagada, India. Environ. Monit. Assess., 185(5); 4347–4359.
Mukherjee, B., Majumdar, M., Gangopadhyay, A., Chakraborty, S. and Chaterjee, D. (2015). Phytoremediation of Parboiled Rice Mill Wastewater Using Water Lettuce (Pistia Stratiotes). Int. J. Phytoremediation, 17(7); 651–656.
Quinlan, J. R. (1992). Learning with continuous classes. 5th Aust. Jt. Conf. Artif. Intell., 92; 343–348.
R.S. Govindaraju. (2000). Task Committee on Application of Artificial Neural Networks in Hydrology, Artificial Neural Networks in Hydrology. II:Hydrologic Application. J. Hydrol. Eng., 5(2); 124–136.
Rahman, M. A. and Hasegawa, H. (2011). Aquatic arsenic: Phytoremediation using floating macrophytes. Chemosphere, 83(5); 633–646.
Ready, K. R., Kadlec, R. H., Flaig, E. and Gale, P. M. (1999). Phosphorus retention in streams and wetlands: A review. Crit. Rev. Environ. Sci. Technol., 29(1); 83–146.
Reddy, S. S. G., Raju, A. J. S. and Kumar, B. M. (2015). Phytoremediation of sugar industrial water effluent using various hydrophytes. Int. J. Environ. Sci., 5(6); 1147.
Rezania, S., Ponraj, M., Fadhil Md Din, M., Chelliapan, S. and Md Sairan, F. (2016). Effectiveness of Eichhornia crassipes in nutrient removal from domestic wastewater based on its optimal growth rate. Desalin. Water Treat., 57(1); 360–365.
Saha, P., Shinde, O. and Sarkar, S. (2017). Phytoremediation of industrial mines wastewater using water hyacinth. Int. J. Phytoremediation, 19(1); 87–96.
Sihag, P., Esmaeilbeiki, F., Singh, B. and Pandhiani, S. M. (2019). Model-based soil temperature estimation using climatic parameters : the case of Azerbaijan Province , Iran. Geol. Ecol. Landscapes, 1–13.
Sihag, P., Singh, V. P., Angelaki, A., Kumar, V., Vand, S. and Golia, E. (2019). Modelling of infiltration using artificial intelligence techniques in semi-arid Iran. Hydrol. Sci. J. 64(13); 1647 - 1658.
Singh, D., Gupta, R. and Tiwari, A. (2012). Potential of Duckweed ( Lemna minor ) for Removal of Lead from Wastewater by Phytoremediation. J. Pharm. Res., 5(3); 1578–1582.
Tanhan, P., Kruatrachue, M., Pokethitiyook, P. and Chaiyarat, R. (2007). Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromolaena odorata (L.) King & Robinson]. Chemosphere, 68(2); 323–329.
Van De Moortel, A. M. K., Meers, E., De Pauw, N. and Tack, F. M. G. (2010). Effects of vegetation, season and temperature on the removal of pollutants in experimental floating treatment wetlands. Water. Air. Soil Pollut., 212(1–4); 281–297.
Kumar, S. & Deswal, S.
Pollution is licensed under a "Creative Commons Attribution 4.0 International (CC-BY 4.0)"
436
Wang, M., Zhang, D. Q., Dong, J. W. and Tan, S. K. (2017). Constructed wetlands for wastewater treatment in cold climate—A review. J. Environ. Sci., 57; 293–311.
Wang, Y., Witten, I. H., van Someren, M. and Widmer, G. (1997). Inducing models trees for continuous classes. Proc. Poster Pap. Eur. Conf. Mach. Learn. Dep. Comput. Sci. Univ. Waikato, New Zel., .
Zare Abyaneh, H. (2014). Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters. J. Environ. Heal. Sci. Eng., 12(1); 40.