Chakraborti, D., Rahman, M.M., Das, B., Murrill, M., Dey, S., Chandra M. S., Dhar, R.K.,
Biswas, B.K., Chowdhury, U.K., Roy, S., Sorif, S., Selim, M., Rahman, M. and Quamruzzaman, Q. (2010). Status of groundwater arsenic contamination in Bangladesh: a 14-year study report. Water Res., 44(19); 5789-802.
Bose, P. and Sharma, A. (2002). Role of iron in controlling speciation and mobilization of arsenic in subsurface environment. Water Res., 36(19); 4916–4926.
Deng, S., Li, Z., Huang, J. and Yu, G. (2010). Preparation, characterization and application of a Ce–Ti oxide adsorbent for enhanced removal of arsenate from water. J Hazard Mater., 179(1-3); 1014–1021.
Devi, R.R. Umlong, I.M., Das, B., Borah, K., Thakur, A.J., Raul, P.K., Banerjee, S. and Singh, L. (2014). Removal of iron and arsenic (III) from drinking water using iron oxide-coated sand and limestone. Appl Water Sci., 4;175–182.
Genç -Fuhrman, H., Tjell, J.C. and McConchie, D. (2004). Adsorption of arsenic from water using activated neutralized red mud. Environ. Sci. Technol., 38;2428-2434.
Hussam, A. and Munir, A.K. (2007). A simple and effective arsenic filter based on composite iron matrix: development and deployment studies for groundwater of Bangladesh. J Environ Sci Health A Tox Hazard Subst Environ Eng.,42(12);1869-78.
Jekel, M. (1994). Arsenic removal in water treatment In Arsenic in the Environment (Edited by Nriagu J.), New York: John Wiley & Sons Inc.
Jiang, J.-Q. (2001). Removing arsenic from groundwater for the developing world - a review. Water Sci Technol., 44(6); 89–98.
Li, R., Li, Q., Gaoa, S. and Shanga, J. K. (2012). Exceptional arsenic adsorption performance of hydrous cerium oxide nanoparticles: Part A. Adsorption capacity and mechanism. Chem Eng J., 185-186; 127-135.
Li, Z., Deng, S., Yu, G., Huang, J. and Lim, V. C. (2010). As(V) and As(III) removal from water by a Ce–Ti oxide adsorbent: Behavior and mechanism. Chem Eng J., 161(1-2), 106–113.
Munoz, J.A., Gonzalo, A. and Valiente, M. (2002). Arsenic adsorption by Fe (III)-loaded open-celled cellulose sponge. Thermodynamic and selectivity aspects. Environ Sci Technol., 36(15); 3405–3411.
Roberts, L.C., Hug, S.J., Ruettimann, T., Billah, M.M., Khan, A. W. and Rahman, M.T. (2004).
Arsenic removal with iron (II) and iron (III) in waters with high silicate and phosphate concentrations. Environ Sci Technol., 38(1); 307–315.
Rahman, M.M., Islam, M.A., Bodrud-Doza, M., Muhib, M.I., Zahid, A., Shammi, M., Tareq, S.M. and Kurasaki, M. (2018). Spatio-Temporal assessment of groundwater quality and human health risk: a case study in Gopalganj, Bangladesh. Expo Health., 10(3);167-188.
Rahman, M. M., Sultana, R., Shammi, M., Bikash, J., Ahmed, T., Maruo, M., Kurasaki, M. and Uddin, M. K. (2016). Assessment of the status of groundwater arsenic at Singair Upazila, Manikganj Bangladesh: Exploring the correlation with other metals and ions. Expo Health., 8(2); 217-225.
Rasul, S.B., Munir, A.K.M., Hossain, Z.A., Khan, A.H., Alauddin, M. and Hussam, A. (2002).
Electrochemical measurement and speciation of inorganic arsenic in groundwater of Bangladesh. Talanta, 58; 33–43.
Sikder, M.T., Rahman, M.M., Jakariya, M., Hosokawa, T., Kurasaki, M. and Saito, T. (2019).
Remediation of water pollution with native cyclodextrins and modified cyclodextrins: a comparative overview and perspectives. Chem Eng J., 355;920-941.
Yu, L., Ma, Y., Ong, C. N., Xie, J. and Liu, Y. (2015). Rapid adsorption removal of arsenate by hydrous cerium oxide–graphene composite. RSC Adv., 5(80); 64983–64990.
Verma, P., Agarwal, A. and Singh, V.K. (2014). Arsenic removal from water through adsorption-A review. Recent Research in Science and Technology., 6(1); 219-226.
Zhang, Y., Dou, X., Zhao, B., Yang, M., Takayama, T. and Kato, S. (2010). Removal of arsenic by a granular Fe–Ce oxide adsorbent: Fabrication conditions and performance. Chem Eng J., 162; 164-170.
Zhang, Y., Yang, M. and Huang, X. (2003). Arsenic(V) removal with a Ce(IV)-doped iron oxide adsorbent. Chemosphere., 51; 945 —952.