Adam, G. and Duncan, H.J. (1999). Effect of diesel fuel on growth of selected plant species. Environ. Geochem. Health., 21(4); 353-357.
Adam, G. and Duncan, H. (2002). Influence of diesel fuel on seed germination. Environ. Pollut., 120(2);363-370.
Ali, N., Sorkhoh, N., Salamah, S., Eliyas, M. and Radwan, S. (2012). The potential of epiphytic hydrocarbon-utilizing bacteria on legume leaves for attenuation of atmospheric hydrocarbon pollutants. J. Environ. Manage., 93(1);113-120.
Aprill, W. and Sims, R.C. (1990). Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil. Chemosphere., 20(1-2); 253-265.
Asiabadi, F.I., Mirbagheri, S.A., Najafi, P. and Moatar, F. (2014). Phytoremediation of petroleum-contaminated soils around Isfahan Oil Refinery (Iran) by sorghum and barley. Curr. World Environ., 9(1); 65.
Banks, M.K., Kulakow, P., Schwab, A.P., Chen, Z. and Rathbone, K. (2003). Degradation of crude oil in the rhizosphere of Sorghum bicolor. Int. J. Phytoremediation., 5(3); 225-234.
Baoune, H., Aparicio, J.D., Acuña, A., El Hadj-khelil, A.O., Sanchez, L., Polti, M.A. and Alvarez, A. (2019). Effectiveness of the Zea mays-Streptomyces association for the phytoremediation of petroleum hydrocarbons impacted soils. Ecotox. Environ. Safe., 184;109591.
Basumatary, B., Bordoloi, S., and Sarma, H.P. (2012) Crude oil-contaminated soil phytoremediation by using Cyperus brevifolius (Rottb.) Hassk. Water Air Soil Pollut., 223; 3373-3383
Chaineau, C.H., Morel, J.L. and Oudot, J. (1997). Phytotoxicity and plant uptake of fuel oil hydrocarbons. J. Environ. Qual., 26(6);1478-1483.
Cheema, S.A., Khan, M.I., Tang, X., Zhang, C., Shen, C., Malik, Z., Ali, S., Yang, J., Shen, K., Chen, X. and Chen, Y. (2009). Enhancement of phenanthrene and pyrene degradation in rhizosphere of tall fescue (Festuca arundinacea). J. Hazard. Mater., 166(2-3); 1226-1231.
Child, R., Miller, C.D., Liang, Y., Sims, R.C. and Anderson, A.J. (2007). Pyrene mineralization by Mycobacterium sp. strain KMS in a barley rhizosphere. J. Environ. Qual., 36(5); 1260-1265.
Barati, M., et al.
702
Chupakhina G.N. and Maslennikov P.V. (2004) Plant adaptation to oil stress. Russ J. Ecol., 35; 290-295
Escalante-Espinosa E., Gallegos-Martinez M.E., Favela-Torres E. and Gutierrez-Rojas M. (2005) Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. inoculated with a microbial consortium in a model system. Chemosphere, 59;405-413.
Huang, X.D., El-Alawi, Y., Penrose, D.M., Glick, B.R. and Greenberg, B.M. (2004). A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ. Pollut., 130(3); 465-476.
Hutchinson, S.L., Schwab, A.P. and Banks, M.K. (2001). Phytoremediation of aged petroleum sludge: effect of irrigation techniques and scheduling. J. Environ. Qual., 30(5); 1516-1522.
Kaimi, E., Mukaidani, T. and Tamaki, M. (2007). Screening of twelve plant species for phytoremediation of petroleum hydrocarbon-contaminated soil. Plant Prod. Sci., 10(2); 211-218.
Kathi, S. and Khan, A.B. (2011). Phytoremediation approaches to PAH contaminated soil. Indian J. Sci. Tech., 4(1); 56-63.
Kechavarzi, C., Pettersson, K., Leeds-Harrison, P., Ritchie, L. and Ledin, S. (2007). Root establishment of perennial ryegrass (L. perenne) in diesel contaminated subsurface soil layers. Environ. Pollut., 145(1); 68-74.
Khan S., Afzal M., Iqbal S., Khan Q.M. (2013) Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere., 90; 1317-1332.
Kuppusamy, S., Maddela, N.R., Megharaj, M. and Venkateswarlu, K. (2020). Approaches for Remediation of Sites Contaminated with Total Petroleum Hydrocarbons. In Total Petrol. Hydrocarbons;167-205
Lindsay, W.L. and Norvell, W. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper 1. Soil Sci. Soc. Am. J., 42(3); 421-428.
Martin, B.C., George, S.J., Price, C.A., Ryan, M.H. and Tibbett, M. (2014). The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: current knowledge and future directions. Sci. Total Environ., 472; 642-653.
Merkl, N., Schultze-Kraft, R. and Infante, C. (2005). Assessment of tropical grasses and legumes for phytoremediation of petroleum-contaminated soils. Water Air Soil Pollut., 165(1-4); 195-209.
Merkl, N., Schultze-Kraft, R. and Infante, C. (2005). Phytoremediation in the tropics–influence of heavy crude oil on root morphological characteristics of graminoids. Environ. Pollut., 138(1); 86-91.
Minai-Tehrani, D. and Herfatmanesh, A. (2007). Biodegradation of aliphatic and aromatic fractions of heavy crude oil–contaminated soil: A pilot study. Biorem. J., 11(2); 71-76.
Nie, M., Zhang, X.D., Wang, J.Q., Jiang, L.F., Yang, J., Quan, Z.X., Cui, X.H., Fang, C.M. and Li, B. (2009) Rhizosphere effects on soil bacterial abundance and diversity in the Yellow River Deltaic ecosystem as influenced by petroleum contamination and soil salinization. Soil Biol. Biochem., 41; 2535-2542.
Njoku, K.L., Akinola, M.O. and Taiwo, B.G. (2009). Effect of gasoline diesel fuel mixture on the germination and the growth of Vigna unguiculata (Cowpea). Afr. J. Environ. Sci. Technol., 3(12).
Okoh, A.I. and Trejo-Hernandez, M.R. (2006). Remediation of petroleum hydrocarbon polluted systems: exploiting the bioremediation strategies. Afr. J. Biotech., 5(25).
Pajuelo, E., Rodríguez-Llorente, I.D., Lafuente, A. and Caviedes, M.Á. (2011). Legume–rhizobium symbioses as a tool for bioremediation of heavy metal polluted soils. In Biomanagement of metal-contaminated soils; 95-123. Springer, Dordrecht.
Peng, S., Zhou, Q., Cai, Z. and Zhang, Z. (2009). Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment. J. Hazard. Mater., 168(2-3); 1490-1496.
Phillips, L.A., Greer, C.W., Farrell, R.E. and Germida, J.J. (2009). Field-scale assessment of weathered hydrocarbon degradation by mixed and single plant treatments. Appl. Soil Ecol., 42(1); 9-17.
Prematuri, R., Mardatin, N.F., Irdiastuti, R., Turjaman, M., Wagatsuma, T. and Tawaraya, K. (2019). Petroleum hydrocarbons degradation in contaminated soil using the plants of the Aster family. Environ. Sci. Pollut. Res.;1-8.
Rojo, F. (2009). Degradation of alkanes by bacteria. Environ. Microbiol., 11(10); 2477-2490.
Salanitro, J.P., Dorn, P.B., Huesemann, M.H., Moore, K.O., Rhodes, I.A., Rice Jackson, L.M., Vipond, T.E., Western, M.M., Wisniewski, H.L. (1997) Crude oil hydrocarbon bioremediation and soil ecotoxicity assessment. Environ. Sci. Technol., 31;1769-1776.
Pollution, 6(4): 695-703, Autumn 2020
Pollution is licensed under a "Creative Commons Attribution 4.0 International (CC-BY 4.0)"
703
Shahriari, M.H., Savaghebi-Firoozabadi, G., Azizi, M., Kalantari, F. and Minai-Tehrani, D. (2007). Study of growth and germination of Medicago sativa (Alfalfa) in light crude oil-contaminated soil. Res. J. Agric. Biol. Sci., 3(1);46-51.
Shanker, A.K., Cervantes, C., Loza-Tavera, H., Avudainayagam, S. (2005) Chromium toxicity in plants. Environ. Int., 31; 739-753.
Shirdam, R., Zand, A.D., Bidhendi, G.N., Mehrdadi, N. (2008) Phytore-mediation of hydrocarbon-contaminated soils with emphasis on the effect of petroleum hydrocarbons on the growth of plant species. Phytoprotection., 89;21-29.
Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T. and Sumner, M.E. (1996). Methods of soil analysis, Parts 2 and 3. Chemical analysis. Soil Sci Soc Am J., Madison, WI.
Susarla, S., Medina, V.F. and McCutcheon, S.C. (2002). Phytoremediation: an ecological solution to organic chemical contamination. Ecol. Eng., 18(5); 647-658.
Wang, J., Zhang, Z., Su, Y., He, W., He, F. and Song, H. (2008). Phytoremediation of petroleum polluted soil. Petrol. Sci., 5(2);167-171.
Wenzel, W.W. (2009) Rhizosphere processes and management in plant- assisted bioremediation (phytoremediation) of soils. Plant Soil., 321;385-408.