Abbaszadeh, S., Alwi, S. R. W., Webb, C., Ghasemi, N. and Muhamad, I. I. (2016). Treatment of lead-contaminated water using activated carbon adsorbent from locally available papaya peel biowaste. J. Clean. Prod., 118; 210-222.
Abou-Shady, A., Peng, C., Bi, J., Xu, H. and Almeria, O. J. (2012). Recovery of Pb (II) and Removal of NO3- from Aqueous Solutions Using Integrated Electrodialysis, Electrolysis, and Adsorption Process. Desalination., 286; 304–315.
Ahmad, H., Ee, C. J. and Baharudin, N. S. (2016). A Preliminary Study for Removal of Heavy Metals from Acidic Synthetic Wastewater by Using Pressmud-Rice Husk Mixtures. IOP Conf. Ser.: Earth Environ. Sci., 36; 012031.
Ahmad, S. W., Zafar, M. S., Ahmad, S., Mohsin, M. and Qutab H. G. (2018). Dye Removal from Textile Waste Water Using Potato Starch: Parametric Optimization Using Taguchi Design of Experiments. Arch. Environ. Prot., 44(2); 26-31.
Alqadami, A. A., Naushad, M., Alothman, Z. A. and Ghfar, A. A. (2017). Novel Metal-Organic Framework (MOF) Based Composite Material for the Sequestration of U(VI) and Th(IV) Metal Ions from Aqueous Environment. ACS Appl. Mater. Interfaces, 9(41); 36026–36037.
Ayyappan, R., Sophia, A. C., Swaminathan, K. and Sandhya, S. (2005). Removal of Pb(II) from Aqueous Solution Using Carbon Derived from Agricultural Wastes. Process. Biochem., 40; 1293–1299.
Pollution, 6(4): 879-892, Autumn 2020
891
Azme, N. N. M. and Murshed, M. F. (2018). Treatability of Stabilize Landfill Leachate by Using Pressmud Ash as an Adsorbent. IOP Conf. Ser.: Earth Environ. Sci., 140; 012041.
Bahadir, T., Bakan, G., Altas, L. and Buyukgungor, H. (2007). The Investigation of Lead Removal by Biosorption: An Application at Storage Battery Industry Wastewaters. Enzyme Microb. Technol., 41; 98–102.
Calero, M., Pérez, A., Blázquez, G., Ronda, A. and Martín-Lara, M. A. (2013). Characterization of Chemically Modified Biosorbents from Olive Tree Pruning for the Biosorption of Lead. Ecol. Eng., 58; 344–354.
Demirbaş, Ö. and Yıldız, C. (2016). Optimization of Adsorption of Textile Dye onto Diatomite. Asian j. phys. chem. sci., 1(1); 1–9.
Dermentzis, K., Valsamidou, E. and Marmanis, D. (2012). Simultaneous removal of acidity and lead from acid lead battery wastewater by aluminum and iron electrocoagulation. J. Eng. Sci. Technol. Rev., 5(2); 1-5.
Fajardo, A. R., Lopes, L. C., Rubira, A. F. and Muniz, E. C. (2012). Development and application of chitosan/poly(vinyl alcohol) films for removal and recovery of Pb(II), Chem. Eng. J., 183; 253–260.
Gottesfeld, P., Were, F. H., Adogame, L., Gharbi, S., San, D., Nota, M. M. and Kuepouo, G. (2018). Soil Contamination from Lead Battery Manufacturing and Recycling in Seven African Countries. Environ. Res., 161; 609-614.
Guo, Z., Zhang. J., Kang, Y. and Liu, H. (2017). Rapid and Efficient Removal of Pb(II) from Aqueous Solutions Using Biomass-Derived Activated Carbon with Humic Acid in-Situ Modification. Ecotoxicol. Environ. Saf., 145; 442–448.
Gupta, N., Tripathi, S. and Balomajumder, C. (2011). Characterization of Pressmud: A Sugar Industry Waste. Fuel, 90; 389–394.
Gupta, N., Balomajumder, C. and Agarwal, V. K. (2012). Adsorption of Cyanide Ion on Pressmud Surface: A Modeling Approach. Chem. Eng. J., 191; 548–556.
Gupta, V. K. and Ali, I. (2004). Removal of Lead and Chromium from Wastewater Using Bagasse Fly Ash - A Sugar Industry Waste. J. Colloid Interface Sci., 271; 321–328.
Kardam, A., Raj, K.R., Srivastava, S. and Srivastava, M. M. (2014). Nanocellulose fibers for biosorption of cadmium, nickel, and lead ions from aqueous solution. Clean Techn. Environ. Policy, 16; 385–393.
Kaur, M., Kumari, S. and Sharma P. (2019). Removal of Pb (II) from aqueous solution using nanoadsorbent of Oryza sativa husk: Isotherm, kinetic and thermodynamic studies. Biotechnology Reports, 25; e00410.
Li, Y., Du, Q., Wang, X., Zhang, P., Wang, D., Wang, Z. and Xia, Y. (2010). Removal of Lead from Aqueous Solution by Activated Carbon Prepared from Enteromorpha Prolifera by Zinc Chloride Activation. J. Hazard. Mater., 183; 583–589.
Macchi, G., Pagano, M., Santori, M. and Tiravanti, G. (1993). Battery Industry Wastewater: Pb Removal and Produced Sludge. Water Res., 27(10); 1511–1518.
Madan, S. S. and Wasewar, K. L. (2017). Optimization for Benzeneacetic Acid Removal from Aqueous Solution Using CaO2 Nanoparticles Based on Taguchi Method. J. Appl. Res. Technol., 15; 332–339.
Matlock, M. M., Howerton, B. S. and Atwood, D.A. (2002). Chemical Precipitation of Lead from Lead Battery Recycling Plant Wastewater. Ind. Eng. Chem. Res., 41(6); 1579–1582.
Meshram, S., Thakur, C. and Soni, A. B. (2020). Fixed bed adsorption treatment of effluent of battery recycling unit to remove Pb(II) using steam activated granular activated carbon. J. Serb. Chem. Soc., 84(0); 1-13.
Mironyuk, I., Tatarchuk, T., Naushad, M., Vasylyeva, H. and Mykytyn, I. (2019). Highly Efficient Adsorption of Strontium Ions by Carbonated Mesoporous TiO2. J. Mol. Liq., 285; 742–753.
Nandhini, M.; Balasubramanian, S.; Ramanujam, S.; Dhakshinamoorthy, G.N. (2014) Optimization of Parameters for Dye Removal by Electro- -Oxidation Using Taguchi Design. J. Electrochem. Sci. Te., 4 (4); 227–234.
Naseem, R. and Tahir, S. S. (2001). Removal of Pb(II) from Aqueous/Acidic Solutions by Using Bentonite as an Adsorbent. Water Res., 35(16); 3982–3986.
Rondina, D. J. G., Ymbong, D. V., Cadutdut, M. J. M., Nalasa, J. R. S., Paradero, J. B., Mabayo, V. I. F. and Arazo, R. O. (2019). Utilization of a Novel Activated Carbon Adsorbent from Press Mud of Sugarcane Industry for the Optimized Removal of Methyl Orange Dye in Aqueous Solution. Appl. Water Sci., 9; 1–12.
Rout, P. P. and Arulmozhiselvan, K. (2019). Investigating the Suitability of Pressmud and Coir Pith for Use as Soilless Substrate by SEM, XRF, UV-Vis and FTIR Spectroscopy Techniques. Cellulose Chem. Technol., 53 (5-6); 599-607.
Meshram, S. et al.
Pollution is licensed under a "Creative Commons Attribution 4.0 International (CC-BY 4.0)"
892
Salahandish, R., Ghaffarinejad, A. and Norouzbeigi, R. (2016). Rapid and efficient lead (II) ion removal from aqueous solutions using Malva sylvestris flower as a green biosorbent. Anal. Methods, 8; 2515-2525.
Srivastava, V. and Sheth, K. N. (2018). Characterization of Pressmud and Rice Husk Combination for Adsorption of Heavy Metals from Waste Acid Generated from the Processing of E-Waste. Ecol. Environ. Conserv., 24(2); 990-992.
Srivastava, V. C., Mall, I. D. and Mishra, I. M. (2006). Characterization of Mesoporous Rice Husk Ash (RHA) and Adsorption Kinetics of Metal Ions from Aqueous Solution onto RHA. J. Hazard. Mater., 134; 257–267.
Thakur, C., Mall, I. D. and Srivastava, V. C. (2014). Competitive adsorption of phenol and resorcinol onto rice husk ash. Theor. Found. Chem. Eng., 48 (1); 60–70.
Thakur, C., Srivastava, V. C., Mall, I. D. and Hiwarkar, A. D. (2017). Modelling of Binary Isotherm Behaviour for the Adsorption of Catechol with Phenol and Resorcinol onto Rice Husk Ash. Indian Chem. Eng., 59(4); 312-334.
Volpe, M., Oliveri, D., Ferrara, G., Salvaggio, M., Piazza, S., Italiano, S. and Sunseri, C. (2009). Metallic Lead Recovery from Lead-Acid Battery Paste by Urea Acetate Dissolution and Cementation on Iron. Hydrometallurgy, 96; 123–131.
Yu, Y., Chen, N., Hu, W. and Feng, C. (2015). Application of Taguchi Experimental Design Methodology in Optimization for Adsorption of Phosphorus onto Al/Ca-Impregnated Granular Clay Material. Desalin. Water Treat., 56(11); 2994–3004.
Zhang, F., Chen, X., Wu, F. and Ji, Y. (2016). High adsorption capability and selectivity of ZnO nanoparticles for dye removal. Colloids Surf., A : Physicochem. Eng. Aspects, 509; 474–483.
Zolgharnein, J., Asanjarani, N. and Shariatmanesh, T. (2013). Taguchi L16 Orthogonal Array Optimization for Cd (II) Removal Using Carpinus Betulus Tree Leaves: Adsorption Characterization. Int. Biodeterior. Biodegrad., 85; 66–77.