Beheshti, M. H., Dehghan, S. F., Hajizadeh, R., Jafari, S. M. and Koohpaei, A. (2018). Modelling the consequences of explosion, fire and gas leakage in domestic cylinders containing LPG. Ann. Med. Health. Sci. Res., 8, 83-88.
Pollution, 7(1): 217-230, Winter 2021
229
Cherradi, G., Boulmakoul, A. and Zeitouni, K. (2018). An atmospheric dispersion modeling microservice for hazmat transportation. Procedia. Comput. Sci., 130, 526-532.
Calixto, E. and Larouvere, E. L. (2010). The regional emergency plan requirement: Application of the best practices to the Brazilian case. Saf. Sci., 48(8), 991-999.
Fatemi, F., Ardalan, A., Aguirre, B., Mansouri, N. and Mohammadfam, I. (2017). Areal location of hazardous atmospheres simulation on toxic chemical release: a scenario-based case study from Ray, Iran. Electron. Physician., 9(10), 5638.
Gas, L. (2013). Lower and upper explosive limits for flammable gases and vapors (LEL/UEL). Matheson. gas. Prod., 1-22.
Hassoon, A. F., Al-Jiboori, M. H. and Anad, A. M. (2019). Simulation effect of stability classes on SO2 concentration in dura refinery and Neighboring regions. Al-Mustansiriyah. J. Sci., 30(3), 1-8.
Hosseinnia, B., Khakzad, N. and Reniers, G. (2018). Multi-plant emergency response for tackling major accidents in chemical industrial areas. Saf. Sci., 102, 275-289.
Hobza, P., Selzle, HL. and Schlag, EW. (1994). Structure and properties of benzene-containing molecular clusters: nonempirical ab initio calculations and experiments. Chem. Rev., 94(7); 1767-85.
Ilic, P., Ilic, S. and Bjelicc, L. S. (2018). Hazard Modelling of Accidental Release Chlorine Gas Using Modern Tool-Aloha Software. Qual. Life., 16(1-2).
Jafarnia, A., Khorrambakht, A. and Ghanbari, A. (2018). Geographical Survey of Chlorine Gas Leakage at the Chlorination Station of Abfa Company Using Aloha Software (Case Study: Lar Station). Environ. Manag. Hazards., 5(4); 435-48.
Jani, D. D., Reed, D., Feigley, C. E. and Svendsen, E. R. (2016). Modeling an irritant gas plume for epidemiologic study. Int. J. Environ. Health. Res., 26(1), 58-74.
Kasemy, Z. A., Kamel, G. M., Abdel-Rasoul, G. M. and Ismail, A. A. (2019). Environmental and health effects of benzene exposure among Egyptian taxi drivers. J. Environ. Public. Health., 2019. 1-6.
Kalatpoor, O., Goshtasp, K. and Khavaji, S. (2010). Health, safety and environmental risk of a gas pipeline in an oil exploring area of Gachsaran. Ind. Health., 1012100041-1012100041.
Li, Y., Chen, D., Cheng, S., Xu, T., Huang, Q., Guo, X., and Liu, X. (2015). An improved model for heavy gas dispersion using time-varying wind data: Mathematical basis, physical assumptions, and case studies. J. Loss. Prev. Process. Ind., 36, 20-29.
Mao, S., Lang, J., Chen, T., Cheng, S., Wang, C., Zhang, J. and Hu, F. (2020). Impacts of typical atmospheric dispersion schemes on source inversion. Atmos. Environ., 117572.
Macdonald, R. (2003). Theory and objectives of air dispersion modelling. Model. Air. Emissions. Compliance., 1-27.
Oribi, M. O. and Abdulkareem, A. K. (2020). Scenarios to reduce evaporation from class A evaporation pan by using windbreaks. Eng. Environ. Sci., 29 (3), 343–354.
Onelcin, P., Mutlu, M. M., and Alver, Y. (2013). Evacuation plan of an industrial zone: Case study of a chemical accident in Aliaga, Turkey and the comparison of two different simulation softwares. Saf. Sci., 60, 123-130.
Pourbabaki, R., Karimi, A. and Yazdanirad, S. (2019). Modeling the consequences and analyzing the dangers of carbon disulfide emissions using ALOHA software in an oil refinery. J. Health. Field, 6(3), 24199-24199.
Ramli, A., Ghani, N. A., Hamid, N. A. and Desa, M. S. Z. M. (2018). Consequence modelling for estimating the toxic material dispersion using ALOHA: Case studies at two different chemical plants. Proceedings, 2(20), 1268.
Shahpari, A., Aminsharei, F. and Ghashang, M. (2019). Application of PHAST software in methane emission factor for startup process of gas compressors (Case study: Iran gas transmission operation district 2). J. Air. Pollut. Health., 4(1); 27-32.
Shamsuddin, S. D., Omar, N., and Koh, M. H. (2017). Development of radionuclide dispersion modeling software based on Gaussian plume model. Malays. J. Ind. Appl. Mathematics., 33(2); 149-157.
Soleimani, M. and Amini, N. (2017). Source identification and apportionment of air pollutants in Iran. J. Air. Pollut. Health., 2(1): 57-72.
Tseng, J. M., Su, T. S. and Kuo, C. Y. (2012). Consequence evaluation of toxic chemical releases by ALOHA. Procedia. Eng., 45, 384-389.
U.S. EPA and NOAA. (2007). User's Manual ALOHA. 5-195.
Vianelloa, C., Guerrinia, L., Maschio, G. and Murab, A. (2014). Consequence analysis: comparison of methodologies under API standard and commercial software. Chem. Eng., 36.
Wu, J., Yang, H. and Cheng, Y. (2015). Domino effect analysis, assessment and prevention in process industries. J. Syst. Sci. Inf., 3(6), 481-498.
Shojaee Barjoee, S., et al.
Pollution is licensed under a "Creative Commons Attribution 4.0 International (CC-BY 4.0)"
230
Yu, H., Lee, W. K. and Sohn, J. R. (2020). Risk hotspot of chemical accidents based on spatial analysis in Ulsan, South Korea. Saf. Sci., 123, 104544.
Zhao, D., Wang, Z. R., Song, Z. Y., Guo, P. K. and Cao, X. Y. (2020). Assessment of domino effects in the coal gasification process using Fuzzy Analytic Hierarchy Process and Bayesian Network. Saf. Sci., 130, 104888.
Zhang, H., Xu, T., Zong, Y., Tang, H., Liu, X. and Wang, Y. (2015). Influence of meteorological conditions on pollutant dispersion in street canyon. Procedia. Eng., 121, 899-905.