Ao, C. and Lee, S. (2005). Indoor air purification by photocatalyst TiO2 immobilized on an activated carbon filter installed in an air cleaner. Chemical engineering science., 60; 103-109.
Bao, L., Seki, K., Niinuma, H., Otani, Y., Balgis, R., Ogi, T., Gradon, L. and Okuyama, K. (2016). Verification of slip flow in nanofiber filter media through pressure drop measurement at low-pressure conditions. Separation and purification technology., 159; 100-107.
Benabbou, A., Derriche, Z., Felix, C., Lejeune, P. and Guillard, C. (2007). Photocatalytic inactivation of Escherischia coli: Effect of concentration of TiO2 and microorganism, nature, and intensity of UV irradiation. Applied Catalysis B: Environmental., 76; 257-263.
Bodzek, M. and Rajca, M. (2012). Photocatalysis in the treatment and disinfection of water. Part I. Theoretical backgrounds/Fotokataliza w oczyszczaniu i dezynfekcji wody część i. podstawy teoretyczne. Ecological Chemistry and Engineering S, 19, 489-512.
Cadet, J., Sage, E. and Douki, T. (2005). Ultraviolet radiation-mediated damage to cellular DNA. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis., 571; 3-17.
Chotigawin, R., Sribenjalux, P., Supothina, S., Johns, J., Charerntanyarak, L. and Chuaybamroong , P. (2010). Airborne microorganism disinfection by photocatalytic HEPA filter. Environment Asia., 3; 1-7.
Chuaybamroong, P., Chotigawin, R., Supothina, S., Sribenjalux, P., Larpkiattaworn, S. and WU, C. Y. (2010). Efficacy of photocatalytic HEPA filter on microorganism removal. Indoor Air., 20; 246-254.
Greist, H., Hingorani, S., Kelley, K. and Goswami, D. (2002). Using scanning electron microscopy to visualize photocatalytic mineralization of airborne microorganisms. Indoor Air, 2002, 9th.
Gupta, S. M. and Tripathi, M. (2011). A review of TiO2 nanoparticles. Chinese Science Bulletin., 56; 1639-1657.
Huang, Y., Ho, S. S. H., Lu, Y., Niu, R., Xu, L., Cao, J. and Lee, S. (2016). Removal of indoor volatile organic compounds via photocatalytic oxidation: a short review and prospect. Molecules, 21, 56.
Keller, V., Keller, N., Ledoux, M. J. and Lett, M.-C. (2005). Biological agent inactivation in a flowing air stream by photocatalysis. Chemical communications, 2918-2920.
Kuehn, T. H. (2003). Airborne infection control in health care facilities. Journal of solar energy engineering., 125; 366-371.
Leung, M. and Chan, A. H. (2006). Control and management of hospital indoor air quality. Medical science monitor., 12; SR17-SR23.
Lin, C.-Y. and Li, C.-S. (2003). Inactivation of microorganisms on the photocatalytic surfaces in air. Aerosol Science and Technology., 37; 939-946.
Mo, J., Zhang, Y., Xu, Q., Lamson, J. J. and Zhao, R. (2009). Photocatalytic purification of volatile organic compounds in indoor air: a literature review. Atmospheric environment., 43; 2229-2246.
Pollution 2021, 7(2): 309-319 319
Mousavi, T., Golbabaei, F., Pourmand, M. R., Rezaei, S., Hosseini, M., Helmi Kohneshahri, M., Masoorian, E. and Karimi, A. (2017). Evaluating the efficiency of UVC radiation on HEPA filters to remove airborne microorganisms. Health and Safety at Work, 7, 111-120.
Oguma, K., Katayama, H. and Ohgaki, S. (2002). Photoreactivation of Escherichia coli after low-or medium-pressure UV disinfection determined by an endonuclease sensitive site assay. Applied and environmental microbiology, 68, 6029-6035.
Pal, A., Pehkonen, S. O., Liya, E. Y. and Ray, M. B. (2007). Photocatalytic inactivation of Gram-positive and Gram-negative bacteria using fluorescent light. Journal of Photochemistry and Photobiology A: Chemistry., 186; 335-341.
Rengasamy, A., Zhuang, Z. and Berryann, R. (2004). Respiratory protection against bioaerosols: literature review and research needs. American journal of infection control., 32; 345-354.
Stamate, M. and Lazar, G. (2007). Application of titanium dioxide photocatalysis to create self-cleaning materials. Modeling and Optimization in the Machines Building Field (MOCM)., 13; 280-285.
Thi Tuyet Nhung, L., Nagata, H., Takahashi, A., Aihara, M., Okamoto, T., Shimohata, T., Mawatari, K., Akutagawa, M., Kinouchi, Y. and Haraguchi, M. (2012). Sterilization effect of UV light on Bacillus spores using TiO2 films depends on wavelength. The Journal of Medical Investigation., 59; 53-58.
Vequizo, J. J. M., Matsunaga, H., IshikuS, T., Kamimura, S., Ohno, T. and Yamakata, A. (2017). Trapping-induced enhancement of photocatalytic activity on brookite TiO2 powders: comparison with anatase and rutile TiO2 powders. ACS Catalysis, 7, 2644-2651.
Vohra, A., Goswami, D., Deshpande, D. and Block, S. (2006). Enhanced photocatalytic disinfection of indoor air. Applied Catalysis B: Environmental., 64; 57-65.
Yang, X. and Wang, Y. (2008). Photocatalytic effect on plasmid DNA damage under different UV irradiation time. Building and Environment, 43, 253-257.
Zacarias, S. M., Satuf, M. L., Vaccari, M. C. and Alfano, O. M. (2015). Photocatalytic inactivation of bacterial spores using TiO2 films with silver deposits. Chemical Engineering Journal., 266; 133-140.
Zhang, J., Zhou, P., Liu, J. and Yu, J. (2014). New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Physical Chemistry Chemical Physics., 16; 20382-20386.
Zhang, M., An, T., Fu, J., Sheng, G., Wang, X., Hu, X. and Ding, X. (2006). Photocatalytic degradation of mixed gaseous carbonyl compounds at low level on adsorptive TiO2/SiO2 photocatalyst using a fluidized bed reactor. Chemosphere., 64; 423-431.
Zhao, J., Krishna, V., Hua, B., Moudgil, B. and Koopman, B. (2009). Effect of UVA irradiance on photocatalytic and UVA inactivation of Bacillus cereus spores. Journal of Photochemistry and Photobiology B: Biology., 94; 96-100.
Zhao, J. and Yang, X. (2003). Photocatalytic oxidation for indoor air purification: a literature review. Building and Environment., 38; 645-654.
Zuo, G.-M., Cheng, Z.-X., Chen, H., Li, G.-W. and Miao, T. (2006). Study on photocatalytic degradation of several volatile organic compounds. Journal of hazardous materials, 128, 158-163.