Ahn, Y., Hatzell, M. C., Zhang, F. and Logan, B. E. (2014). Different electrode configurations to optimize performance of multi-electrode microbial fuel cells for generating power or treating domestic wastewater. J. Power. Sources., 249, 440445.
Ahn, Y., Logan, B. E. (2012). A multi-electrode continuous flow microbial fuel cell with separator electrode assembly design. Appl. Microbiol. Biotechnol., 93, 2241-2248.
Ahn, Y., Logan, B. E. (2013). Domestic wastewater treatment using multi-electrode continuous flow MFCs with a separator electrode assembly. Appl. Microbiol. Biotechnol., 97, 409-416.
Aparna, P. P., Meignanalakshmi, S. (2016) Comparison of power generation of electrochemically active bacteria isolated from the biofilm of single chambered multi-
Pollution 2021, 7(2): 417-424 423
electrode microbial fuel cell developed using Capra hircus rumen fluid. Energy. Sour. Part A., 38, 982-988.
Blazquez, E., Gabriel, D., Antonio, J., Guisasola, A. (2016). Treatment of high-strength sulfate wastewater using an autotrophic biocathode in view of elemental sulfur recovery. Water Research., 105, 395-405.
Chaijak, P., Sato, C., Paucar, N., Lertworapreecha, M., Sukkasem, C. (2019). Preliminary study of electricity generation and sulfate removal performance in a novel air-cathode microbial fuel cell (AC-MFC) using laccase-producing yeast as a biocatalyst. Pol. J. Environ. Stud., 28, 3099-3104.
Chaijak, P., Sato, C., Lertworapreecha, M., Sukkasem, C., Boonsawang, P., Paucar, N. (2020). Potential of biochar-anode in a ceramic-separator microbial fuel cell (CMFC) with a laccase-based air cathode. Pol. J. Environ. Stud., 29, 499-503.
Chaijak, P., Sukkasem, C., Lertworapreecha, M., Boonsawang, P., Wijasika, S., Sato, C. (2018). Enhancing electricity generation using a laccase-based microbial fuel cell with yeast Galactomyces reessii on cathode. J. Microbiol. Biotechnol., 28, 1360-1366.
Chaiprapat, S., Preechalertmit, P., Boonsawang, P., Karnchanawong, S. (2011). Sulfidogenesis in pretreatment of high-sulfate acidic wastewater using anaerobic sequencing batch reactor and upflow. Environ. Eng. Sci., 28, 597-604.
Das, D., Singh, S., Ray, S. (2017). A study on utilization of latex processing effluent for treatment and energy recovery in microbial fuel cell. Material, Energy and Environment Engineering. 2017, 237-244.
Ghadge, A. N., Jadhav, D. A., Ghangrekar, M. M. (2016). Wastewater treatment in pilot-scale microbial fuel cell using multielectrode assembly with ceramic separator suitable for field applications. Environ. Prog. Sustain., 35, 1809-1817.
Hays, S., Zhang. F., Logan, B. E. (2011). Performance of two different types of anodes in membrane electrode assembly microbial fuel cells for power generation from domestic wastewater. J. Power. Sources., 196, 8293-8300.
Hien, N. N., Tuan, D. V., Nhat, P. T., Van, T. T. T., Tam, N. V., Que, N. X., Dan, N. P. (2017). Application of oxygen limited autotrophic nitritation/denitrification (OLAND) for anaerobic latex processing wastewater treatment. Int. Biobeterior. Biodegradation., 124, 45-55.
Jawjit, W., Pavasant, P., Kroeze, C. (2015). Evaluating environmental performance of concentrated latex production in Thailand. J. Clean. Prod., 98, 84-91.
Kim, K. Y., Yang, W., Logan, B. E. (2015). Impact of electrode configurations on retention time and domestic wastewater treatment efficiency using microbial fuel cells. Water. Res., 80, 41-46.
Kim, T., An, J., Jang, J. K., Chang, I. S. (2020). Determination of optimum electrical connection mode for multi-electrode-embedded microbial fuel cells coupled with anaerobic digester for enhancement of swine wastewater treatment efficiency and energy recovery. Bioresour. Technol., 297, 1-7.
Mohammadi, M., Man, H. C., Hassan, M. A., Yee, P. L. (2010). Treatment of wastewater from rubber industry in Malaysia. Afr. J. Biotechnol., 9, 6233-6243.
Moqsud, M. A., Omine, K., Yasufuku, N., Hyodo, M., Nakata, Y. (2013). Microbial fuel cell (MFC) for bioelectricity generation from organic wastes. Waste. Manage., 33, 2465-2469.
Nguyen, H. N., Luong, T. T. (2012). Situation of wastewater treatment of natural rubber latex processing in the Southeastern region, Vietnam. J. Viet. Env., 2, 58-64.
Pendashteh, A. R., Haji, F. A., Chaibakhsh, N., Yazdi, M., Pendashteh, M. (2017). Optimized treatment of wastewater containing natural rubber latex by coagulation-flocculation process combined with Fenton oxidation. J. Mater. Environ. Sci., 8, 4015-4023.
Rader, G. K., Logan, B. E. (2010). Multi-electrode continuous flow microbial electrolysis cell for biogas production from acetate. Int. J. Hydrog., 35, 8848-8854.
424 Chaijak and Sato
Selvaraj, D., Somanathan, A., Jeyakumar, R., Kumar, G. (2020). Generation of electricity by the degradation of electro-Fenton pretreated latex wastewater using double chamber microbial fuel cell. Int. J. Energy Res. 2020, 1-10.
Sonawane , J. M., Gupta, A., Ghosh, P. (2013). Multi-electrode microbial fuel cell (MEMFC): A close analysis towards large scale system architecture. Int. J. Hydrog. 38, 5106-5114.
Sukkasem, C., Laehlah, S. (2015). An economical upflow bio-filter circuit (UBFC): a biocatalyst microbial fuel cell for sulfate-sulfide rich wastewater treatment. Environ. Sci. Water. Res. Technol., 1, 161-168.
Su-ungkavatin, P., Thongnueakhaeng, W., Chaiprasert, P. (2019). Simultaneous removal of sulfur and nitrogen compounds with methane production from concentrated latex wastewater in two bioreactor zones of micro-oxygen hybrid reactor. J. Chem. Technol. Biotechnol., 94, 3276-3291.
Wang, H., Wang, Q., Li, X., Wang, Y., Jin, P., Zheng, Y., Huang, J., Li, Q. (2019). Bioelectricity generation from the decolorization of reactive blue 19 by using microbial fuel cell. J. Environ. Manage., 248; 1-10.
Watari, T., Thanh, N. T., Tsuruoka, N., Tanikawa, D., Kuroda, K., Huong, N. L., Tan N. M., Hai, H. T., Hatamoto, M., Syutsubo, K., Fukada, M., Yamaguchi, T. (2015). Development of a BR-UASB-DHS system for natural rubber processing wastewater treatment. Environ. Technol., 37; 459-465.
Zhang, Y., Liu, M., Zhou, M., Yang, H., Liang, L., Gu, T. (2019). Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production: Synergistic effects, mechanisms and challenges. Renew. Sust. Energ. Rev., 103; 13-29.