Abarike, E. D., Amenyogbe, E., Ampofo-Yeboah, A., Abobi, S. M., Atindana, S. A., Alhassan, E. H. and Akongyuure, D. N. (2015). Exploring the nutrient potential of Nymphaea alba (water lilly) for use as livestock feed. UDS Int. J. Development, 2(1); 1-11.
Arafath, M. A., Hossain, M., Alam, S. S. and Sourav, R. (2013). Studies on Adsorption Efficiency and Kinetics of Dye Removal from Textile Effluent using some Natural Bio-adsorbent. Int. J. Sci. Eng. Technol., 2(9); 853-856.
Boskey, A. and Camacho, N. P. (2007). FT-IR Imaging of Native and Tissue-Engineered Bone and Cartilage. Biomaterials, 28(15); 2465-2478.
Braşoveanu, M., Nemţanu, M. R. and Duţă, D. (2013). Electron-beam processed corn starch: evaluation of physicochemical and structural properties and technical-economic aspects of the processing. Braz. J. Chem. Eng., 30(4); 847-856.
Bulut, Y., Gozubenli, N. and Aydin, H. (2007). Equilibrium and kinetics studies for adsorption of direct blue 71 from aqueous solution by wheat shells. J. Hazard. Mater., 144; 300–306.
Camacho, N. P., West, P., Torzilli, P. A. and Mendelsohn, R. (2001). FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage. Biopolymers (Biospectroscopy)., 62(1); 1–8.
Chatterjee, S., Chatterjee, S., Chatterjee, B. P. and Guha, A. K. (2007). Adsorptive removal of congo red, a carcinogenic textile dye by chitosan hydrobeads: Binding mechanism, equilibrium and kinetics. Colloids Surf. A Physicochem. Eng. Asp., 299(1); 146–152.
Das, S., Mishra, A. and Ghangrekar, M. M. (2020). Production of hydrogen peroxide ussing various metal-based catalysts in electrochemical and bioelectrochemical systems: mini review. J. Hazard. Toxic Radioact. Waste., 24(3); 06020001-06020006.
Elahmadi, M. F., Bensalah, N. and Gadri, A. (2009). Treatment of aqueous wastes contaminated with Congo Red dye by electrochemical oxidation and ozonation processes. J. of Hazard. Mater., 168; 1163-1169.
El Maghraby, A. and El deeb, H. (2011). Removal of a basic dye from aqueous solution by adsorption using rice hulls. Global NEST J., 13(1); 90-98.
Erdemoğlu, S., Aksu, S. K., Sayilkan, F., Izgi, B., Asiltürk, M., Sayılkan, H. and Güçer, S. (2008). Photocatalytic degradation of Congo Red by hydrothermally synthesized nanocrystalline TiO2 and identification of degradation products by LC–MS. J. of Hazard. Mater., 155; 469-476.
Gupta, V. K., Agarwal, S., Bharti, A. K. and Sadegh, H. (2017). Adsorption mechanism of functionalized multi-walled carbon nanotubes for advanced Cu (II) removal. J. Mol. Liq., 230; 667-673.
Gupta, A., Das, S. and Ghangrekar, M. M. (2020). Optimal cathodic imposed potential and appropriate catalyst for the synthesis of hydrogen peroxide in microbial electrolysis cell. Chem. Phy. Lett., 754; 137690-137694.
Hameed, B. H. (2009). Evaluation of papaya seeds as a novel non-conventional low-cost adsorbent for removal of methylene blue. J. Hazard. Mater., 162(2-3); 939–944.
Janveja, B., Kant, K. and Sharma, J. (2008). A study of activated Rice Husk charcoal as an adsorbent of Congo Red dye present in textile industrial waste. J. Punjab Acad. Forensic Med. Toxicol., 8(1); 12–15.
Jeyanthi, J. and Dhinakaran, M. (2012). Study of the removal of methylene blue from aqueous solution by using coir pith. J. Exp. Sci., 3(9); 21-26.
Kanawade, S. M. and Gaikwad, R. W. (2011). Removal of zinc ions from industrial effluent by using cork powder as adsorbent. Int. J. Chem. Eng. Appl., 2(3); 202-206.
Liu, Y., Wang, J., Zheng, Y. and Wang, A. (2012). Adsorption of methylene blue by kapok fiber treated by sodium chlorite optimized with response surface methodology. CHEM. ENG. J., 184; 248– 255.
Ma, H., Wang, M., Yang, R., Wang, W., Zhao, J., Shen, Z. and Yao, S. (2007). Radiation degradation of Congo Red in aqueous solution. Chemosphere, 68; 1098-1104.
Macedo, J. S., Costa Júnior, N. B., Almeida, L. E., Vieira, E. F. S., Cestari, A. R., Gimenez, I. F., Carreño, N. L. V. and Barreto, L. S. (2006). Kinetic and calorimetric study of the adsorption of dyes on mesoporous activated carbon prepared from coconut coir dust. J. Colloid Interface Sci., 298(2); 515–522.
Mane, R. S. and Bhusari, V. N. (2012). Removal of Colour (dyes) from textile effluent by adsorption using Orange and Banana peel. Int. J. Eng. Res. Appl., 2(3); 1997-2004.
Mittal, A., Mittal, J., Malviya, A., Kaur, D. and Gupta, V. K. (2010). Adsorption of hazardous dye crystal violet from wastewater by waste materials. J. Colloid Interface Sci., 343(2); 463–473.
Mohammed, W. T., Farhood, H. F. and Al-Mas'udi, A. H. B. (2007). Removal of Dyes from Wastewater of Textile Industries Using Activated Carbon and Activated Alumina. Iraqi J. Chem. Petroleum Eng., 9(4); 43-52.
Mohamad Zulfika, Z., Hazielim, B., Baini, R. and Zauzi, N. S. A. (2017). Effect of pH, Dosage and Concentration on the Adsorption of Congo Red onto Untreated and Treated Aluminium Dross. IOP Conf. Series:Mat. Sci. Eng., 205; 1-5.
Namasivayam, C. and Kavitha, D. (2002). Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes Pigm., 54; 47-58.
Pavia, D. L., Lampman, G. M., Kriz, G. S. and Vyvyan, J. R. (2009).Introduction to Spectroscopy. Brooks/Cole, Cengage Learning: Belmont, USA.
Rahman, A. K. M. L., Al Mamun, R., Ahmed, N., Sarker, A. and Sarkar, A. M. (2019). Removal of Toxic Congo Red Dye Using Water Hyacinth Petiole, an Efficient and Selective Adsorbent. J. Chem Soc. Pakistan, 41(5); 825-833.
Rahman, S., Khan, M. T. R., Akib, S. and Biswas, S. K. (2013). Investigation of heavy metal pollution in peripheral river water around Dhaka city. Pensee Journal, 75(10); 421-435.
Raghuvanshi, S. P., Singh, R., Kaushik, C. P. and Raghav, A. K. (2005). Removal of textile basic dye from aqueous solutions using sawdust as bio-adsorbent. Int. J. Environ. Stud., 62(3); 329–339.
Raghuvanshi, S. P., Singh, R. and Kaushik, C. P. (2008). Adsorption of congo red dye from aqueous solutions using neem leaves as adsorbent. Asian J. Chem., 20(7); 4994-5000.
Reddy, S. S., Kotaiah, B. and Reddy, N. S. P. (2008). Color pollution control in textile dyeing industry effluents using tannery sludge derived activated carbon. B. CHEM. SOC. ETHIOPIA, 22(3); 369-378.
Rocha, C. G., Zaia, D. A. M., Alfaya, R. V. S. and Alfaya, A. A. S. (2009). Use of rice straw as biosorbent for removal of Cu(II), Zn(II), Cd(II) and Hg(II) ions in industrial effluents. J. Hazard. Mater., 166; 383–388.
Sharma, J. and Janveja, B. (2008). A study on removal of congo red dye from the effluents of textile industry using rice husk carbon activated by steam. Rasayan J. Chem., 1(4); 936-942.
Singh, R. P., Singh, Y., Gupta, N., Gautam, A., Singh, A., Suman, R. and Kulsrestha, R. R. (2001). Removal of Cr(VI) from wastewater using activated carbon, flyash, rice husk and saw dust. Proc. X National Symposium on Environment. Bhaba Atomic Research Centre, Mumbai, India, 143-147.
Virlan, C., Ciocârlan, R. G., Roman, T., Gherca, D., Cornei, N. and Pui, A. (2013). Studies on adsorption capacity of cationic dyes on several magnetic nanoparticles. Acta Chemica Iasi., 21: 19-30.
Wanyonyi, W. C., Onyari, J. M. and Shiundu, P. M. (2014). Adsorption of Congo Red Dye from Aqueous Solutions Using Roots of Eichhornia Crassipes: Kinetic and Equilibrium Studies. Energy Procedia, 50; 862-869.
Zuorro, A., Lavecchia, R., Medici, F. and Piga, L. (2013). Spent Tea Leaves as a Potential Low-cost Adsorbent for the Removal of Azo Dyes from Wastewater. Chem. Eng. Trans., 32; 19-24.