Abdelwahab, O., Nemr, A. E., Sikaily, A. E. and Khaled, A. (2005). Use of rice husk for adsorption of direct dyes from aqueous solution: a case study of Direct F. Scarlet. Egypt. J. Aquat. Res., 31(1); 1-11.
Abbas, R. A., Farhan, A. A. R., Al Ani, H. N. A. and Nechifor, A. C. (2019). Determination of the optimal condition of direct blue dye removal from aqueous solution using eggshell. Rev. Chim., 70(4); 1108-1113.
Anastopoulos, I., Pashalidis, I., Hosseini-Bandegharaei, A., Giannakoudakis, D. A., Robalds, A., Usman, M., Escudero L. B., Zhou, Y., Colmenares,J. C., Núñez-Delgado, A. and Lima, É. C. (2019). Agricultural biomass/waste as adsorbents for toxic metal decontamination of aqueous solutions. J. Mol. Liq., 295; 111684.
Ahmad, A. A., Hameed, B. H. and Aziz, N. (2007). Adsorption of direct dye on palm ash: Kinetic and equilibrium modeling. J. Hazard. Mater., 141(1); 70-76.
Ai, L., Zhang, C., Liao, F., Wang, Y., Li, M., Meng, L. and Jiang, J. (2011). Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: kinetic, isotherm and mechanism analysis. J. Hazard. Mater., 198; 282-290.
Arami, M., Limaee, N. Y. and Mahmoodi, N. M. (2008). Evaluation of the adsorption kinetics and equilibrium for the potential removal of acid dyes using a biosorbent. Chem. Eng. J., 139(1); 2-10.
Arica, M. Y. and Bayramoğlu, G. (2007). Biosorption of Reactive Red-120 dye from aqueous solution by native and modified fungus biomass preparations of Lentinus sajor-caju. J. Hazard. Mater., 149(2); 499-507.
Bansal, M., Singh, D. and Garg, V. K. (2009). A comparative study for the removal of hexavalent chromium from aqueous solution by agriculture wastes’ carbons. J. Hazard. Mater., 171(1-3); 83-92.
Çelekli, A., Ilgun, G. and Bozkurt, H. (2012). Sorption equilibrium, kinetic, thermodynamic, and desorption studies of Reactive Red 120 on Chara contraria. Chem. Eng. J., 119; 228-235.
Çelekli, A., Tanrıverdi, B. and Bozkurt, H. (2011). Predictive modeling of removal of Lanaset Red G on Chara contraria; kinetic, equilibrium, and thermodynamic studies. Chem. Eng. J., 169(1-3); 166-172.
Chahm, T., Martins, B. A. and Rodrigues, C. A. (2018). Adsorption of methylene blue and crystal violet on low-cost adsorbent: waste fruits of Rapanea ferruginea (ethanol-treated and H2SO4-treated). Environ. Earth Sci., 77(13); 508.
Chakraborty, T. K., Islam, M. S., Zaman, S., Kabir, A. H. M. E. and Ghosh, G. C. (2020). Jute (Corchorus olitorius) stick charcoal as a low-cost adsorbent for the removal of methylene blue dye from aqueous solution. SN Appl. Sci., 2; 765.
Chen, H., Zhao, J., Wu, J. and Dai, G. (2011). Isotherm, thermodynamic, kinetics and adsorption mechanism studies of methyl orange by surfactant modified silkworm exuviae. J. Hazard. Mater., 192; 246–254.
Dehghani, M. H., Dehghan, A. and Najafpoor, A. (2017). Removing Reactive Red 120 and 196 using chitosan/zeolite composite from aqueous solutions: Kinetics, isotherms, and process optimization. J. Ind. Eng. Chem., 51; 185-195.
Deng, H., Lu, J., Li, G., Zhang, G. and Wang X. (2011). Adsorption of methylene blue on adsorbent materials produced from cotton stalk. Chem. Eng. J., 172(1); 326-334.
Dai, Y., Sun, Q., Wang, W., Lu, L., Liu, M., Li, J., Shengshu, Y., Yue, S., Kexin, Z., Jiayi, X., Wenlei, Z., Zhaoyue, H., Yahan, Y., Yuewen, G., Yanjun, C., Xu, Z., Feng, G. and Zhang, Y. (2018). Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review. Chemosphere., 211; 235-253.
Duran, C., Ozdes, D., Gundogdu, A. and Senturk, H. B. (2011). Kinetics and isotherm analysis of basic dyes adsorption onto almond shell (Prunus dulcis) as a low cost adsorbent. J. Chem. Eng. Data, 56(5); 2136-2147.
Eren, Z. and Acar, F. N. (2006). Adsorption of Reactive Black 5 from an aqueous solution: equilibrium and kinetic studies. Desalination, 194(1-3); 1-10.
Freundlich, H. M. F. (1906). Over the adsorption in solution. J. Phys. Chem., 57; 358-471.
Ghosh, G. C., Chakraborty, T. K., Zaman, S., Nahar, M. N. and Kabir, A. H. M. E. (2020). Removal of Methyl Orange Dye from Aqueous Solution by a Low-Cost Activated Carbon Prepared from Mahagoni (Swietenia mahagoni) Bark. Pollution, 6(1); 171-184.
Ghosh, G. C., Samina, Z., & Chakraborty, T. K. (2018). Adsorptive removal of Cr (VI) from aqueous solution using rice husk and rice husk ash. Desalin. Water Treat., 130; 151-160.
Gupta, V. K., Pathania, D., Agarwal, S. and Singh, P. (2012). Adsorptional photocatalytic degradation of methylene blue onto pectin-CuSnanocomposite under solar light. J. Hazard. Mater., 243; 179-186.
Hasan, M. B. and Hammood, Z. A. (2018). Wastewater Remediation via Modified Activated Carbon: A Review. Pollution, 4(4); 707-723.
Ho, Y. S. and McKay, G. (2000). The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res., 34(3); 735-742.
Ip, A. W. M., Barford, J. P. and McKay, G. (2009). Reactive Black dye adsorption/desorption onto different adsorbents: effect of salt, surface chemistry, pore size and surface area. J. Colloid. Interface Sci., 337(1); 32-38.
Isah, U., Abdulraheem, G., Bala, S., Muhammad, S. and Abdullahi, M. (2015). Kinetics, equilibrium and thermodynamics studies of C.I. Reactive Blue 19 dye adsorption on coconut shell based activated carbon. Int. Biodeter. Biodegr., 102; 265-273.
Jain, M., Garg, V. K. and Kadirvelu, K. (2010). Adsorption of hexavalent chromium from aqueous medium onto carbonaceous adsorbents prepared from waste biomass. J. Environ., 99(4); 949-957.
Kadirvelu, K., Kavipriya, M., Karthika, C., Radhika, M., Vennilamani, N. and Pattabhi, S. (2003). Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions. Bioresour. Technol., 87(1); 129-132.
Khattri, S. D. and Singh, M. K. (2000). Colour removal from synthetic dye wastewater using a bioadsorbent. Water Air Soil Pollut., 120(3-4); 283-294.
Kumar, K. V., Ramamurthi, V. and Sivanesan, S. (2005). Modeling the mechanism involved during the sorption of methylene blue onto fly ash. J. Colloid. Interface Sci., 284(1); 14-21.
Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar., 24(4); 1-39.
Langmuir, I. (1917). The constitution and fundamental properties of solids and liquids. II. Liquids. J. Am. Chem. Soc., 39(9);1848-1906.
Mahmoodi, N. M., Hayati, B., Arami, M. and Lan, C. (2011). Adsorption of textile dyes on Pine cone from colored wastewater: kinetic, equilibrium and thermodynamic studies. Desalination, 268(1-3); 117-125.
Malakootian, M., Mansooria, H. J., Hosseini, A. and Khanjani, N. (2015). Evaluating the efficacy of alumina/carbon nanotube hybrid adsorbents in removing Azo Reactive Red 198 and Blue 19 dyes from aqueous solutions. Process Saf. Environ., 96; 125-137.
Mubarak, N. S. A., Jawad, A. H. and Nawawi, W. I. (2017). Equilibrium, kinetic and thermodynamic studies of Reactive Red 120 dye adsorption by chitosan beads from aqueous solution. Energ. Ecol. Environ., 2(1); 85-93.
Munagapati, V. S., Yarramuthi, V. and Kim, D. S. (2017). Methyl orange removal from aqueous solution using goethite, chitosan beads and goethite impregnated with chitosan beads. J. Mol. Liquids., 240; 329-339.
Munagapati, V. S, Yarramuthi, V., Kim, Y., Lee, K. M. and Kim, D. S. (2018). Removal of anionic dyes (Reactive Black 5 and Congo Red) from aqueous solutions using Banana Peel Powder as an adsorbent. Ecotoxicol. Environ., 148; 601-607.
Naveen, N., Saravanan, P., Baskar, G. and Renganathan, S. (2011). Equilibrium and kinetic modeling on the removal of Reactive Red 120 using positively charged Hydrilla verticillata. J. Taiwan Inst. Chem. E., 42(3); 463-469.
Ngah, W. S. W. and Musa, A. (1998). Adsorption of humic acid onto chitin and chitosan. J. Appl. Polym. Sci., 69(12); 2305-2310.
Panda, G. C., Das, S. K. and Guha, A. K. (2009). Jute stick powder as a potential biomass for the removal of congo red and rhodamine B from their aqueous solution. J. Hazard. Mater., 164(1); 374-379.
Qian, W. C., Luo, X. P., Wang, X., Guo, M. and Li, B. (2018). Removal of methylene blue from aqueous solution by modified bamboo hydrochar. Ecotoxicol. Environ. Saf., 157; 300-306.
Robinson, T., McMullan, G., Marchant, R. and Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol., 77(3); 247-255.
Rusmin, R., Sarkar, B., Liu, Y., McClure, S. and Naidu, R. (2015). Structural evolution of chitosan-palygorskite composites and removal of aqueous lead by composite beads. Appl. Surf. Sci., 353; 363-375.
Rápó, E., Szép, R., Keresztesi, Á., Suciu, M. and Tonk, S. (2018). Adsorptive removal of cationic and anionic dyes from aqueous solutions by using eggshell household waste as biosorbent. Acta Chim. Slov., 65(3); 709-717.
Shirmardi, M., Mesdaghinia, A., Mahvi, A. H., Nasseri, S. and Nabizadeh, R. (2012). Kinetics and equilibrium studies on adsorption of acid red 18 (Azo-Dye) using multiwall carbon nanotubes (MWCNTs) from aqueous solution. J. Chem., 9(4); 2371-2383.
Sismanoglu, T., Kismir, Y. and Karakus, S. (2010). Single and binary adsorption of reactive dyes from aqueous solutions onto clinoptilolite. J. Hazard. Mater.,184(1-3); 164-169.
Srikantan, C., Suraishkumar, G. K. and Srivastava, S. (2018). Effect of light on the kinetics and equilibrium of the textile dye (Reactive Red 120) adsorption by Helianthus annuus hairy roots. Bioresour. Technol., 257; 84-91.
Subbaiah, M. V. and Kim, D. S. (2016). Adsorption of methyl orange from aqueous solution by aminated pumpkin seed powder: Kinetics, isotherms, and thermodynamic studies. Ecotoxicol. Environ. Safety., 128; 109-117.
Subramani, S. E. and Thinakaran, N. (2017). Isotherm, kinetic and thermodynamic studies on the adsorption behaviour of textile dyes onto chitosan. Process Saf. Environ. Protec., 106; 1-10.
Weber, W. J. and Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div., 89(2); 31-60.
Yagub, M. T., Sen, T. K., Afroze, S. and Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: a review. Adv. Colloid. Interface Sci., 209; 172-184.
Yaman, M. and Demirel, M. H. (2020). Synthesis and characterization of activated carbon from biowaste-walnut shell and application to removal of uranium from waste. Pollution., 6(4); 935-944.
Zhang, Z., O’Hara, I. M., Kent, G. A. and Doherty, W. O. (2013). Comparative study on adsorption of two cationic dyes by milled sugarcane bagasse. Ind. Crop. Prod., 42; 41-49.
Zheng, L., Wang, C., Shu, Y., Yan, X. and Li, L. (2015). Utilization of diatomite/chitosan-Fe (III) composite for the removal of anionic azo dyes from wastewater: equilibrium, kinetics and thermodynamics. Colloids Surf. A: Physicochem Eng. Asp., 468; 129-139.
Zhu, X., Liu, Y., Qian, F., Zhou, C., Zhang, S. and Chen, J. (2015). Role of hydrochar propertieson the porosity of hydrochar-based porous carbon for their sustainable application. ACS Sustain. Chem. Eng., 3(5); 833-840.