Biological and Geochemical Studies of Urinary Tract Stones in Lorestan Province

Document Type : Original Research Paper

Authors

1 Department of Environment, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

2 Department of Geology, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

Abstract

Mineralogy studies can help understand the interactions of geographical, environmental, and geological factors. Considering frequent occurrence of urinary tract stones in the south and west of Iran, the present paper examines trace elements, like heavy metals, in 53 urine stone samples collected from patients in Lorestan Province. It investigates the mineralogy of the stones, using X-ray diffraction. The samples are then classified into five mineral groups (calcium oxalate, urate, cysteine, calcium oxalate-urate, and calcium oxalate/phosphate). Results from this analysis are confirmed by SEM images, showing the crystalline form of the mineral phases. The microscopic studies show that only the mineral group of calcium oxalate (whewellite) could be detected in thin sections, prepared from urinary tract stone samples. The main and trace elements in each group are determined through ICP-MS method with the results showing that calcium is the most abundant substance in urinary tract stones, compared to other elements. This is caused by the role of calcium in most basic functions of cell metabolism. The correlation between magnesium and strontium is 0.64, originated from the placement of high amounts of strontium in calcium oxalate minerals. The positive correlation between sodium and calcium also indicates that sodium is replaced by calcium due to the similarity of the ionic radius in the crystal structure. Results from this study can help us find the causes behind the frequent occurrence of urinary tract stones in Lorestan Province.

Keywords


Abboud, I. A. (2008). Mineralogy and chemistry of urinary tract stones: Patients from North Jordan. Envi. Geoch. and Heal., 30(5), 445–463.
Abboud, I. A. (2008a). Analyzing correlation coefficients of the concentrations of trace elements in urinary tract stones. Jor. J Eart and Env. Scie., 1(2), 73–80.
Abboud, I. A. (2008b). Concentration effect of trace metals in Jordanian patients of urinary calculi Jor. J Eart and Env. Scie., 30(1), 11–20.
Abeywickarama, B. Ralapanawa, U. and Chandrajith, R. (2015). Geoenvironmental factors related to high incidence of human urinary calculi (kidney stones) in Central Highlands of Sri Lanka. Environ Geochem Health, pp. 1-12
Afaj, A. H. and Sultan, M. A. (2005). Mineralogical composition of the urinary tract stones from different provinces in Iraq. The Scientific World Journal, 5, 24–38.
Aragon, I. M., Herrera-Imbroda, B., Queipo-Ortuño, M. I., Castillo, E., Del Moral, J. S. G., Gomez-Millan, J. and Lara, M. F. (2018). The urinary tract microbiome in health and disease. Eur.Uro. Foc., 4(1), 128-138.
Atakan. I. H., Kaplan. M., Seren. G., Aktoz. T., Gül. H. and Inci. O. (2007). Serum, urinary and stone zinc, iron, magnesium and copper levels in idiopathic calcium oxalate stone patients. Inte. Uro and Nep., 39(2), p: 351-356.
Bazin, D., Chevallier, P., Matzen, G., Jungers, P, and Daudon, M. (2007). Heavy elements in urinary tract stones. Urolo. Res., 35(4), 179–184.
Beirami. S., Barzoki. H. and Bahramfar, N. (2016). Application of response surface methodology for optimization of trace amount of diazinon preconcentration in natural waters and biological samples by carbon mesoporous CMK‐3, Biomedical Chromatography. 2017;31: e3874.
Cepon-Robins, T. J., Blackwell, A. D., Gildner, T. E., Liebert, M. A., Urlacher, S. S., Madimenos, F. C. and Sugiyama, L. S. (2021). Pathogen disgust sensitivity protects against infection in a high pathogen environment. Proceedings of the National Aca. Sci., 118(8).
Chandrajith, R., Weerasingha, A., Premaratne, K. M., Gamage, D., Abeygunasekera, A. M., Joachimski, M. M. and Senaratne, A. (2019). Mineralogical, compositional and isotope characterization of human kidney stones (urolithiasis) in a Sri Lankan population. Envi. geoch and hea., 41(5), 1881-1894.
Daudon, M., Bader, C. A., Jungers, P., Beaugendre, O. and Hoarau, M. P. (1993). Urinary calculi: review of classification methods and correlations with etiology. Sca. Mic., 7(3), 32.
Deeming. S. and Weber. C. (1977), Evaluation of hair analysis for determination of zinc status using rats. Ame. J. Clin Nut., 30(12), 2047-2052.
Delfan, B., Bahmani, M., Eftekhari, Z., Jelodari, M., Saki, K. and Mohammadi, T. (2014). Effective herbs on the wound and skin disorders: an ethnobotanical study in Lorestan province, west of Iran. Asi. Pac. J. Tro. Dis., 4, S938-S942.
Durgawale, P., Shariff, A., Hendre, A., Patil, S. and Sontakke, A. (2010). Chemical analysis of stones and its significance in urolithiasis. Biom. Res., 21: 305-310.
Esmail, A. O., Qadir, B. A. and Hamad, H. Q. (2020). Effect of Drinking Water Hardness on Kidney Stones Formation in Ranya District. Cih. Univ. Erbil. Scie. J, 4(1), 1-6.
Giannossi. M. L. and Summa. V. (2013). An Observation on the Composition of Urinary Calculi: Environmental Influence. In. Medi. Geoch (p: 67-90). Medical Geochemistry. Springer, Dordrecht. doi /10.1007/978-94-007-4372-4_5
Giannossi. M. L., Summa. V. and Mongelli. G. (2012). Trace element investigations in urinary tract stones: A preliminary pilot case in Basilicata (Southern Italy). Journal of Tra Elem in Medi and Bio., 27(2), p: 91-97.
Golovanova. O., Palchik. N., Maksimova. N. and IN. A. (2006). Comparative Characterization of the Microelement Composition of Kidney Stones from Patients in the Novosibirsk and Omsk Regions. Chemistry for sustainable development, 15 (2007) 55p61
Hesse, A. (2009). Urinary tract stones. In F. Lang (Ed.), Encyclopedia of molecular mechanisms of disease. Berlin: Springer. (pp. 2144–2147).  
Hesse, A.,and Sanders, G. (1988). Atlas of infrared spectra for the analysis of urinary concrements Stuttgart, 192.
Japlaghi, M., Gholam Ali Fard, M. and Shayesteh, K. (2017). Monitoring and analysis of the land pattern of Lorestan province and the process of its change in the environment of GIS,  J. Nat Envi., (1)70, 15-35.
Lai, H. C., Chang, S. N., Lin, H. C., Hsu, Y. L., Wei, H. M., Kuo, C. C. and Chiang, H. Y. (2019). Association between urine pH and common uropathogens in children with urinary tract infections. Journal of Microbiology, Immunology and Infection Volume 54, Issue 2, April 2021, Pages 290-298
Joost. J. and Tessadri. R. (1986). Trace element investigations in kidney stone patients. Euro. urol.,13(4), p: 264-270.
 Khattech. I. and Jemal. M. (1997). A complete solid-solution exists between Ca and Sr in synthetic apatite. Thermochim Acta, 298, 23.
Keshavarzi, B., Yavarashayeri, N., Irani, D., Moore, F., Zarasvandi, A. and Salari, M. (2015). Trace elements in urinary tract stones: A preliminary investigation in Fars Province, Iran. Envi. geoch and heal., 37(2), 377–389.
Kohri, K., Garside, J. and Blacklock, N. (1988). The role of magnesium in calcium oxalate urolithiasis. Bri.  J. Uro., 61(2), 107–115.
Kuta, J., Macha´t, J., Benova´, D., C ˇ ervenka, R. and Korˇistkova´, T. (2012). Urinary calculi—atypical source of information on mercury in human biomonitoring. Cent. Eur. J. Chem., 10(5), 1475–1483.
Lohiya, A., Kant, S., Kapil, A., Gupta, S. K., Misra, P. and Rai, S. K. (2017). Population-based estimate of urinary tract stones from Ballabgarh, northern India. Nat. med. J Ind., 30(4), 198.
McGrath. K. M. (2001). Probing material formation in the presence of organic and biological molecules. Adv. Mat.,13(12‐13), 989-992.
Meyer. J. L. and Thomas. Jr. W. C. (1982). Trace metal-citric acid complexes as inhibitors of calcification and crystal growth. II. Effects of Fe (III), Cr (III) and Al (III) complexes on calcium oxalate crystal growth. J. urol., 128(6), 1376-1378.
Munoz, J. A., and Valiente, M. (2005). Effects of trace metals on the inhibition of calcium oxalate crystallization. Urol. Res., 33(4), 267–272.
Perk. H, Ahmet Serel. T., Kosar. A., Deniz. N. and Sayin. A. (2002). Analysis of the trace element contents of inner nucleus and outer crust parts of urinary calculi. Urol Int 2002;68:286–290
Rani, L., Thapa, K., Kanojia, N., Sharma, N., Singh, S., Grewal, A. S. and Kaushal, J. (2020). An extensive review on the consequences of chemical pesticides on human health and environment. J. Cl. Pro., 124657.
Robertson, W. G. Peacock, M. Heyburn, P. and Hanes, F. (1980). Epidemionological risk factors in calcium stone Disease. Scan. J. Uro and Nep., 53, pp. 15–28.
Safarinejad, M. R. (2007). Adult urolithiasis in a population-based study in Iran: prevalence, incidence, and associated risk factors. Urol. Res., 35(2), 73–82.
Siener, R., Jahnen1, A. and Hesse, A., (2004). Influence of a mineral water rich in calcium, magnesium and bicarbonate on urine composition and the risk of calcium oxalate crystallization, Eur. J. Cli. Nutr., 58: 270-276.
Touryan, L. A. Lochhead, M. J. Marquardt, B. J. and Vogel, V. (2004). Sequential switch of biomineral crystal morphology using trivalent ions. Nat Mat., 3(4), pp. 239–243.
Wang, P., Zhang, H., Zhou, J., Jin, S., Liu, C., Yang, B. and Cui, L. (2021). Study of risk factor of urinary calculi according to the association between stone composition with urine component. Sci rep., 11(1), 1-7.
Wang, S., Zhang, Y., Zhang, X., Tang, Y. and Li, J. (2019). Upper urinary tract stone compositions: the role of age and gender. Int braz j urol., 46, 70-80.
Yavar Ashayeri, N, Keshavarzi, B, Zarasvandi, A. and Mor, F. (2014). Geochemistry of urinary tract stones as one of the harmful biominerals: a case study of Fars province, J. Adv. Ap. Geo., 13, 50-42.
Zarasvandi, A., Carranza, E. J. M., Heidari, M. and Mousapour, E. (2014). Environmental factors of urinary tract stones mineralogy, Khouzestan Province, Iran. J. Afr. Eart. Sci., 97, 368–376.
Zarasvandi, A., Heidari, M., Sadeghi, M. and Mousapoor, E. (2013). Major and trace element composition of urinary tract stones, Khuzestan province, Southwest, Iran. Journal of Geochemical Exploration, 131, 52–58.