Adeyemo, A.A., Adeoye I.O. and Bello, O.S. (2017). Adsorption of dyes using different types of clay: a review. Appl. Water. Sci. 7, 543–568.
Alexander, J,A,, Zaini, M.A.A., Surajudeen, A., Aliyu, E.N.U. and Omeiza, A.U. (2019). Surface modification of low-cost bentonite adsorbents - a review. Part. Sci. Technol. 37(5), 538-549.
Baghban, A., Bahadori, A., Mohammadi, A.H. and Behbahaninia, A. (2017). Prediction of CO2 loading capacities of aqueous solutions of absorbents using different computational schemes. Int. J. Greenh. Gas Con. 57, 143–161.
Banerjee, P., Sau, S., Das, P. and Mukhopadhayay, A. (2015). Optimization and modelling of synthetic azo dye wastewater treatment using graphene oxide nanoplatelets: characterization toxicity evaluation and optimization using artificial neural network. Ecotoxicol. Environ. Saf. 119, 47–57.
Canayaz, M. (2019). Training anfis system with moth-flame optimization algorithm. Int. J. Intell. Syst. Appl. Eng. 7(3), 133-144.
Cheng, Y., Feng, Q., Ren, X., Yin, M., Zhou, Y. and Xue, Z. (2015). Adsorption and removal of sulfonic dyes from aqueous solution onto a coordination polymeric xerogel with amino groups. Colloids Surf. A. 485, 125-135.
Cheruiyot, G.K., Wanyonyi, W.C., Kiplimo, J.J. and Maina, E.N. (2019). Adsorption of toxic crystal violet dye using coffee husks: Equilibrium, kinetics and thermodynamics study. Scientific African. 5, 00116.
Dolatabadi, M., Mehrabpour, M., Esfandyari, M., Alidadi, H. and Davoudi, M. (2018). Modeling of simultaneous adsorption of dye and metal ion by sawdust from aqueous solution using of ANN and ANFIS. Chemometr. Intell. Lab. Syst. 181, 72-78.
Du, S., Wang, L., Xue, N., Pei, M., Sui, W. and Guo, W. (2017). Polyethyleneimine modified bentonite for the adsorption of amino black 10B. J. Solid. State Chem. 252, 152-157.
Ghaedi, A.M. and Vafaei, A. (2017). Applications of artificial neural networks for adsorption removal of dyes from aqueous solution: a review. Adv. Colloid Interface Sci. 245, 20-39.
Ghaedi, M., Daneshfar, A., Ahmadi, A. and Momeni, M.S. (2015). Artificial neural network-genetic algorithm based optimization for the adsorption of phenol red (PR) onto gold and titanium dioxide nanoparticles loaded on activated carbon. J. Ind. Eng. Chem. 21, 587-598.
Ghaedi, M., Hosaininia, R., Ghaedi, A.M., Vafaei, A. and Taghizadeh, F. (2014). Adaptive neurofuzzy inference system model for adsorption of 1,3,4-thiadiazole-2,5-dithiol onto gold nanoparticles-activated carbon. Spectrochim. Acta A. 131. 606–614.
Ghaleh, S.P., Khodapanah, E. and Tabatabaei-Nezhad, S.A. (2020). Comprehensive monolayer two-parameter isotherm and kinetic studies of thiamine adsorption on clay minerals: experimental and modeling approaches. J. Mo.l Liq. 306, 112942.
Ghosal, P.S., Kattil, K.V., Yadav, M.K. and Gupta, A.K. (2018). Adsorptive removal of arsenic by novel iron/olivine composite: insights into preparation and adsorption process by response surface methodology and artificial neural network. J. Environ. Manage. 209, 176–187.
Hamad, M.I.H. and Hanan, M.M.A. (2018). Removing of thymol blue from aqueous solutions by pomegranate peel. The Third International Conference On Basic Sciences & Their Applications. 1(1), 111-119.
Ho, Y.S. and Mckay, G. (1998). Kinetic models for the sorption of dye from aqueous solution by wood. Process Saf. Environ. Prot. 76(B2), 183-191.
Huang, Z., Li, Y., Chen, W., Shi, J., Zhang, N., Wang, X., Li, Z., Gao, L. and Zhang, Y. (2017). Modified bentonite adsorption of organic pollutants of dye wastewater. Mater. Chem. Phys. 202, 266-276.
Kausar, A., Iqbal, M., Javed, A., Aftab, K., Nazli, Z.H., Bhatti, H.N. and Nouren, S. (2018). Dyes adsorption using clay and modified clay: A review. J. Mol. Liq. 256, 395-407.
Koyuncu, H. and Kul, A.R. (2020). Synthesis and characterization of a novel activated carbon
using nonliving lichen cetraria islandica (L.) ach. and its application in water remediation: Equilibrium, kinetic and thermodynamic studies of malachite green removal from aqueous media. Surf. Interfaces. 21, 100653.
Kul, A.R. and Koyuncu, H. (2010). Adsorption of Pb(II) ions from aqueous solution by native and activated bentonite: kinetic equilibrium and thermodynamic study. J. Hazard. Mater. 179, 332-339.
Langergren, S. and Svenska, B.K. (1898). Zur theorie der sogenannten adsorption geloester stoffe Veternskapsakad Handlingar. 24, 1-39.
Leodopoulos, Ch., Doulia, D., Gimouhopoulos, K. and Triantis, T.M. (2012). Single and simultaneous adsorption of methyl orange and humic acid onto bentonite. Appl. Clay. Sci. 70, 84-90.
Madan, S.S., Wasewar, K.L. and Pandharipande, S.L. (2016.) Modeling the adsorption of benzene acetic acid on CaO2 nanoparticles using artificial neural network. Resour. Tech. 2, 53–62.
Mahmoodi-Babolan, N., Heydari, A. and Nematollahzadeh, A. (2019). Removal of methylene blue via bioinspired catecholamine/starch superadsorbent and the efficiency prediction by response surface methodology and artificial neural network-particle swarm optimization. Bioresour. Technol. 294, 1-8.
Miyoshi, Y., Tsukimura, K., Morimoto, K., Suzuki, M. and Takagi, T. (2018). Comparison of methylene blue adsorption on bentonite measured using the spot and colorimetric methods. Appl. Clay. Sci. 151, 140-147.
Mondal, S., Aikat, K., Siddharth, K., Sarkar, K., DasChaudhury, R., Mandal, G. and Halder, G. (2017). Optimizing ranitidine hydrochloride uptake of parthenium hysterophorus derived N–biochar through response surface methodology and artificial neural network. Process Saf. Environ. Prot. 107, 388–401.
Ngulube, T., Gumbo, J.R., Masindi, V. and Maity, A. (2017). An update on synthetic dyes adsorption onto clay based minerals: a state-of-art review. J. Environ. Manage. 191, 35-57.
Oussalah, A., Boukerroui, A., Aichour, A. and Djellouli, B. (2019). Cationic and anionic dyes removal by low-cost hybrid alginate/natural bentonite composite beads: adsorption and reusability studies. Int. J. Biol. Macromol. 124, 854-862.
Pauletto, P.S., Gonçalves, J.O., Pinto, L.A.A., Dotto, G.L. and Salau, N.P.G. (2020). Single and competitive dye adsorption onto chitosan–based hybrid hydrogels using artificial neural network modeling. J. Colloid Interface Sci. 560, 722-729.
Poznyak, A., Chairez, I. and Poznyak, T. (2019). A survey on artificial neural networks application for identification and control in environmental engineering: biological and chemical systems with uncertain models. Annu. Rev. Control. 48, 250-272.
Raoufi, F. and Aghaie, H. (2017). Adsorption of thymol blue and Erythrosine-B on MWCNTs functionalized by N-(3-nitrobenzylidene)-N'-trimethoxysilylpropyl-ethane-1,2-diamine: equilibrium, kinetics and thermodynamic study. Orient J. Chem. 33(5), 2542-2550.
Rego, A.S.C., Valim, I.C., Vieira, A.A.S., Vilani, C. and Santos, B.F. (2018). Optimization of sugarcane bagasse pretreatment using alkaline hydrogen peroxide through ANN and ANFIS modelling. Bioresour. Technol. 267, 634–641.
Shankar, K., Elhoseny, M., Lakshmanaprabu, S.K., Ilayaraja, M., Vidhyavathi, R.M., Elsoud, M.A. and Alkhambashi, M. (2018). Optimal feature level fusion based ANFIS classifier for brain MRI image classification. Concurrency Computat. Pract. Exper. 32, 4887.
Souza, P.R., Dotto, G.L. and Salau, N.P.G. (2019). Experimental and mathematical modeling of hindered diffusion effect of cationic dye in the adsorption onto bentonite. J. Environ. Chem. Eng. 7, 1-7.
Tajmiri, S., Azimi, E., Hosseini, M.R. and Azimi, Y. (2020). Evolving multilayer perceptron, and factorial design for modelling and optimization of dye decomposition by bio-synthetized nano CdS-diatomite composite. Environ. Res. 182, 1-13.
Tayebi, H.A., Ghanei, M., Aghajani, K. and Zohrevandi, M. (2019). Modeling of reactive orange 16 dye removal from aqueous media by mesoporous silica/crosslinked polymer hybrid using RBF MLP and GMDH neural network models. J. Mol. Struct. 1178, 514-523.
Weber, W.J. and Morris, J.C. (1963). Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 89, 31-60.
Yagub, M.T., Sen, T.K., Afroze, S. and Ang, H.M. (2014). Dye and its removal from aqueous solution by adsorption: a review. Adv. Colloid Interface Sci. 209, 172-184.
Yıldız, Z. and Uzun, H. (2015). Prediction of gas storage capacities in metal organic frameworks using artificial neural network. Micropor. Mesopor. Mat. 208, 50–54.