Nanocomposites for Packaging Applications: Synthesis, Characterization, Thermal and Microbial Degradation of Its Residues for Plant Growth

Document Type : Original Research Paper

Authors

1 Faculty of Science, Ilam University, P.O.Box 69315516, Ilam, Iran.

2 Department of Biology, Faculty of Science, Biotechnology and Biological Science Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

3 Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

4 Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

5 School of Engineering, University of British Columbia - Okanagan, 1137 Alumni Avenue, Kelowna, V1V 1V7, Canada.

6 Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G1H9, Canada.

Abstract

Environmental pollution, caused by traditional plastic packaging, has recently become more severe due to non-biodegradable nature of petroleum-based plastics. The present research studies the preparation of polyvinyl alcohol (PVOH)/Starch (ST)/Humic Acid (HA) contained sodium montmorillonite clay (MMT) as a plastic packaging method. It also investigates biodegradability of films in terms of microbial and thermal degradation and their residual effect on plant growth. For doing so, the research utilizes Broido Technique to obtain the activation energy of the films’ thermal degradation. The influence of HA/MMT ratio on the surface morphology and physical characteristics has also been assessed, using the Fourier Transform Infrared (FTIR) spectroscopy, Scanning Electron Microscope (SEM), and thermogravimetric analysis (TA). After 12 days of microbial degradation, the total remaining solids are 32.12 wt% (PVOH/ST/HA (3%)/MMT (1%)); 48.17 wt% (PVOH/ST/HA (3%)/MMT (3%)), and 58.82 wt% (PVOH/ST/HA (1%)/MMT (3%)). The research shows that the highest activation energy for PVOH/ST/HA (3%)/MMT (3%) is 75 kJ/mol.

Keywords


Aiqin, D., Jie, X., Qian, L., Dan, L. and Po, H. (2014). Rheological and thermal behavior of PVA/starch blends modified by acrylic acid. Polym Eng Sci., 54(10); 2449-2454.

Batra, M., and Mitra, J. (2020). Enhancing the properties of gelatin–chitosan bionanocomposite films by incorporation of silica nanoparticles. J. Process Eng., 43; 13329.
Boyle, K.K., Kuo, F.C., Horcajada, J. P., Hughes, H., Cavagnaro, L. and Marculescu, C. (2019). General assembly, treatment, antimicrobials: proceedings of international consensus on orthopedic infections. J. Arthroplasty., 34; 225–237.
Chen, L., Ao, F., Ge, X., and Shen, W. (2020). Food-grade Pickering emulsions: preparation, stabilization and applications. Molecules., 25;3202.
da Silva, T. F., Menezes, F., Montagna, L. S., Lemes, A. P., and Passador, F. R. (2019). Effect of lignin as accelerator of the biodegradation process of poly (lactic acid)/lignin composites. Mater. Sci. Eng. B., 251;114441.
Ding, L., Li, X., Hu, L., Zhang, Y., and Mao, Z. (2020). A naked-eye detection polyvinyl alcohol/cellulose-based pH sensor for intelligent packaging. Carbohydr. Polym., 233;115859
Ellahi, H., Khalili Sadrabad, E., Hekmati moghaddam, S., Jebali, A.; Sarmast, E. and Akrami Mohajeri, F. (2020). Application of essential oil of Pistacia atlantica Gum, polypropylene and silica nanoparticles as a new milk packaging. Food Sci. Nutr., 8; 4037–4043.
Emamhadi, M. A., Sarafraz, M., Akbari, M., Fakhri, Y., Linh, N. and Khaneghah, A. (2020). Nanomaterials for food packaging applications: a systematic review. Food Chem. Toxicol., 146;111825.
Fonseca-García, A., Jiménez-Regalado, E. J. and Aguirre-Loredo, R. Y. (2021). Preparation of a novel biodegradable packaging film based on corn starch-chitosan and poloxamers. Carbohydr. Polym., 251;117009.
Garofalo, E., Scarfato, P., Di Maio, L., and Incarnato, L. (2018). Tuning of co-extrusion processing conditions and film layout to optimize the performances of PA/PE multilayer nanocomposite films for food packaging. Polym. Compos., 39; 3157–3167.
Giannakas, A., Stathopoulou, P., Tsiamis, G., and Salmas, C. (2020). The effect of different preparation methods on the development of chitosan/thyme oil/montmorillonite nanocomposite active packaging films. J. Food Process. Preserv., 44;14327.
Gómez-Aldapa, C. A., Velazquez, G., Gutierrez, M. C., Rangel-Vargas, E., Castro-Rosas, J. and Aguirre-Loredo, R. Y. (2020). Effect of polyvinyl alcohol on the physicochemical properties of biodegradable starch films. Mater. Chem. Phys., 239;122027.
Green Facts (2020). Available online at: https://www.greenfacts.org/en/digests/food-lifestyle.htm.

Guo-Xiang, Z., Ping, Q. J. and Liang-Zou, X. (2008). Extruded Starch/PVA Composites: Water Resistance, Thermal Properties, and Morphology. J. Elastomers Plas., 40(4); 303–316.

Hongwei, Y., Yuan, C., Qun, F. and Zhikun, L. (2015). Effects of Treatment Temperature on Properties of Starch-based Adhesives. BioResource., 10;3520-3530.

Imen, T., Naourez, K., Sirine, B., Slima, M., Triki, S., Bardaa, H., Mnif, R. and Ben, S. (2017). Evaluation of dermal wound healing activity and in vitro antibacterial and antioxidant activities of a new exopolysaccharide produced by Lactobacillus sp. Ca6. Inter. J. Bio. Macro., 103;194-201.

Ju, J., Chen, X., Xie, Y., Yu, H., Guo, Y. and Cheng, Y. (2019). Application of essential oil as a sustained release preparation in food packaging. Trends Food Sci. Technol., 92; 22–32.

Kathiresan., K. (2004). Polythene and plastic degrading microbes from mangrove soil. Rev Biol. Trop., 51;629–633.

Katherine, M. D., Dieu, D., Eustathios, P. and Long, Yu. (2008). Key interactions in biodegradable thermoplastic starch/poly (vinyl alcohol)/montmorillonite micro- and nanocomposites. Comp. Sci. Tech., 68(6);1453-1462.
Lawrimore, W.B., Paliwal, B., Chandler, M. Q., Johnson, K. and Horstemeyer, M. F. (2016). Hierarchical multiscale modeling of Polyvinyl Alcohol/Montmorillonite nanocomposites. Polym., 99;386–398.
Mei, L., and Wang, Q. (2020). Advances in using nanotechnology structuring approaches for improving food packaging. Annu. Rev. Food Sci. Technol., 11; 339–364.

Michal, I., Oľga, H., Barbora, B. and Jiří, K. (2010). FT-IR study of gamma-radiation induced degradation of polyvinyl alcohol (PVA) and PVA/humic acids blends. J. Rad. Nucl. Chem., 283; 9–13.

Noorbakhsh-Soltani, S.M., Zerafat, M.M. and Sabbaghi, S. (2018). A comparative study of gelatin and starch-based nano-composite films modified by nano-cellulose and chitosan for food packaging applications. Carbohydr. Polym., 189;48–55.

Nowak, B., Pająk, J., Łabużek, S., Rymarz, G. and Talik, E. (2011). Biodegradation of poly (ethylene terephthalate) modified with polyester "Bionolle" by Penicillium funiculosum. Polimery., 56;35-44.

Pallab, D. and Pankaj, T. (2017). Thermal degradation kinetics of plastics and model selection. Thermochimica Acta., 654;191-202.

Pinkee, P., Jyoti, P., Saikia, B. and Kumar, K. (2012). Bio-plastic (P-3HB-co-3HV) from Bacillus circulans (MTCC 8167) and its biodegradation. Colloids and Surfaces B: Biointerfaces., 92(1);30-34.

Rojas, K., Canales, D., Amigo, N., Montoille, L., Cament, A., Rivas, L.M., Gil-Castell, O. Reyes, P., Ulloa, M.T. and Ribes-Greus, A. (2019). Effective antimicrobial materials based on low-density polyethylene (LDPE) with zinc oxide (ZnO) nanoparticles. Compos. Part B Eng., 172;173–178.
Seethamraju, S., Ramamurthy, P.C. and Madras, G. (2013). Flexible poly (vinyl alcohol-co-ethylene)/modified MMT moisture barrier composite for encapsulating organic devices. RSC Adv., 3;12831–12838
Sepulveda, J., Villegas, C., Torres, A., Vargas, E., Rodriguez, F., Baltazar, S., Prada, A., Rojas, A., Romero, J. and Faba, S. (2020). Effect of functionalized silica nanoparticles on the mass transfer process in active PLA nanocomposite films obtained by supercritical impregnation for sustainable food packaging. J. Supercrit. Fluids., 161;104844.
Swaroop, C. and Shukla, M. (2018). Nano-magnesium oxide reinforced polylactic acid biofilms for food packaging applications. Int. J. Biol. Macromol., 113;729–736
Taghizadeh, M. T., Abbasi, Z. and Nasrollahzade, Z. (2012). Study of enzymatic degradation and water absorption of nanocomposites starch/polyvinyl alcohol and sodium montmorillonite clay, J.Taiwan Inst. Chem. Eng., 43(1); 120–124.
Wu, Z., Wu, J., Peng, T., Li, Y., Lin, D., Xing, B., Li, C., Yang, Y., Yang, L., Zhang, L., Ma, R., Wu, W., Lv, X., Dai, J. and Han, G. (2017). Preparation and Application of Starch/Polyvinyl Alcohol/Citric Acid Ternary Blend Antimicrobial Functional Food Packaging Films, Polymers., 9(3);102.
Yachuan, Z., Curtis, R. and Qiang, L. (2014). Thermoplastic starch processing and characteristics-a review. Crit Rev Food Sci Nutr., 54(10); 1353-1370.

Zhao, G., Liu, Y., Fang, C., Zhang, M., Zhou, C. and Chen, Z. (2006). Water resistance, mechanical properties and biodegradability of methylated-cornstarch/poly (vinyl alcohol) blend film. Polym. Degrad. Stab., 91(4);703-711.

Zhou, X. Y., Cui, Y. F., Jia, D. M. and Xie, D. (2009). Effect of a complex plasticizer on the structure and properties of the thermoplastic PVA/ starch blends. Polym.-Plast. Technol. Eng., 48;489–495.