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ABSTRACT 
Global fire cases in recent years and their vast damages are vivid reasons to study the wildfires more 
deeply. A 25-year period natural wildfire database and a wide array of environmental variables are 
used in this study to develop an artificial neural network model with the aim of predicting potential 
fire spots. This study focuses on non-human reasons of wildfires (natural) to compute global warming 
effects on wildfires. Among the environmental variables, this study shows the significance of 
temperature for predicting wildfire cases while other parameters are presented in a next study. The 
study area of this study includes all natural forest fire cases in United States from 1992 to 2015. The 
data of eight days including the day fire occurred and 7 previous days are used as input to the model to 
forecast fire occurrence probability of that day. The climatic inputs are extracted from ECMWF. The 
inputs of the model are temperature at 2 meter above surface, relative humidity, total pressure, 
evaporation, volumetric soil water layer, snow melt, Keetch–Byram drought index, total precipitation, 
wind speed, and NDVI. The results show there is a transient temperature span for each forest type 
which acts like a threshold to predict fire occurrence. In temperate forests, a 0.1-degree Celsius 
increase in temperature relative to 7-day average temperature before a fire occurrence results in 
prediction model output of greater than 0.8 for 4.75% of fire forest cases. In Boreal forests, the model 
output for temperature increase of less than 1 degree relative to past 7-day average temperature 
represents no chance of wildfire. But the non-zero fire forest starts at 2 degrees increase of 
temperature which ends to 2.62% of fire forest cases with model output of larger than 0.8. It is 
concluded that other variables except temperature are more determinant to predict wildfires in 
temperate forests rather than in boreal forests.  
keywords: Wildfires, Climate change, Temperature, Modeling 
 

INTRODUCTION 
 

Neither all forest ecosystems have the functioning, compositions and structure of ecosystems 
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modulated by fire (Vilà-Vilardell et al., 2020). One of the most serious natural disasters that 

threaten the ecosystem is forest fires (Hamadeh et al., 2017). Forest fires have come to 

attention globally since they can cause great ecological, economic and humanitarian losses 

(Dey & Schweitzer, 2018; Spessa et al., 2015; Vilar et al., 2019). The more wildfires happen 

worldwide, the more losses to human lives and natural resources happen (Davis et al., 2017; 

Dennison et al., 2014; Hamadeh et al., 2017; Jahdi et al., 2016; Littell et al., 2009; Pérez-

Sánchez et al., 2017; Srivas et al., 2017; Stavros et al., 2014). The recent fire cases in US have 

caused severe damage to urban and natural land uses; the volume of the damage is studied by 

scholars which reveal every detail of the losses. 

Policy makers need to examine climate change and its effect for fire management (North et 

al., 2015). Accurate monitor of wildfire risk condition is one of the most common 

prerequisites to conservatively preserve forest wildfires (Flannigan et al., 2013; Vilar et al., 

2019). The first step for fire monitoring is to develop a prediction model to provide 

information for resources allocation to fuel treatments (Jaafari et al., 2017; Nami et al., 2018; 

Parisien et al., 2016). The application of prediction models is based on an assumption that 

similar local conditions are more likely to result in future similar ignitions (Catry et al., 2009; 

Jaafari, Zenner, et al., 2019). 

Fire activity is predicated to increase globally in wildland due to climate change 

(Flannigan et al., 2009; Seidl et al., 2017). One of the most important natural disasters in 

Australia is wildfire. Devastating wildfires occurred across eastern Australia from late winter 

of 2019 to summer of 2020 (Shi et al., 2021).  

Fire regimes have been dominated by weather events which are uncontrolled due to 

changes in fire suppression and  land-use, and climate warming (Duane et al., 2019; Jolly et 

al., 2015; San-Miguel-Ayanz et al., 2013). CO2 emission due to forest wildfire and climate 

change area exacerbated by each other in a positive feedback loop (Hamadeh et al., 2017; 

Ramanathan & Carmichael, 2008). Researchers believe climate change act as one of the main 

drivers in forecasting ecosystem change for the next decades (Abatzoglou & Kolden, 2013; 

Abatzoglou & Williams, 2016; Aponte et al., 2016; Moritz et al., 2012). Climatic changes 

along with socioeconomic changes can alter the composition, loading and connectivity of fuel 

types, which will in turn affect fire regimes (Hessl, 2011). These data depict a dramatic 

picture in spite of steady support of the EC (European Commission) and the numerous efforts 

of national and regional governments to help fire management policies get better (Elia et al., 

2020).  

In this study, the effect of climatic changes on wildfire hazard is identified based on use 

updated fire observations during a 23-year period and a wide array of environmental variables 

to develop an artificial neural network model with the aim of predicting potential fire spots. 
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This study focuses on non-human reasons of wildfires (natural) to compute global warming 

effects on wildfires. In this study, we aim to model the effect of temperature increments on 

wildfires. In other words, we want to show what happens to wildfires while temperature is 

increased by each step. 

 

MATERIAL & METHODS 

 

The study area includes all forest fire cases in United States from 1992 to 2015. As shown in 

Fig 1, the fire spots spread almost all over the United States (Short, 2017).  

The fire cases in this study were acquired from a research data archive supplied by U.S. 

Department of Agriculture (USDA) as shown in Fig 1. The data were retrieved from the 

database which was published with the title of “Spatial wildfire occurrence data for the United 

States” and it contains spatial data of wildfires occurred in the United States from 1992 to 

2015 and it is a part of the national Fire Program Analysis (FPA) system (Short, 2017). The 

data is acquired by reporting systems of federal, state, and local fire organizations. 

For this project, we chose to acquire fire records from 1992 to 2015 only. Besides, only 

those fires records with burnt area of greater than 1 km^2 area examined to be able to focus 

on wildfires that are more destructive. One of the precious attributes of the database is the 

cause of each fire records which shows whether the fire was initiated by a natural or man-

made reason. Due to the objective of this study, the fire records with man-made origin were 

excluded. 

Based on the aforementioned explanation, 18204 fire records were extracted from the 

database. 

Logistic regression is a common tool in some studies (e.g. Catry et al., 2009; Jaafari, Mafi-

Gholami, et al., 2019). There are also other common methods like support vector machine 

(SVM), random forest, and neural network in this regard (Jaafari et al., 2018). 

In this study, an artificial neural network is used to predict probable wildfire hotspot using 

weather condition parameters of a specific day and of a few days before that. We take data of 

eight days including the day that fire started and 7 previous days to forecast fire occurrence 

probability of that day. 

The dataset used for model development includes wildfires occurred in USA during 1992 

to 2015 and climatic parameters extracted from ECMWF, the European Centre for Medium-

Range Weather Forecasts.  

Due to lack of sufficiency and unavailability of directly measured weather data from 

synoptic stations in most of the forest in the world, we used the weather parameters computed 

by weather models and presented by ECMWF. This study also introduces a model that can 
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check the power and reliability of these data for wildfire prediction that is presented in a next 

study.  

Using the data of ECMWF, we take the “ERA5 from 1979 to present” database for the 

input of the model development (Hersbach, H. et al., 2020). 

According to the document of this database, “ERA5 is the fifth generation ECMWF 

atmospheric reanalysis of the global climate (Hersbach, H. et al., 2020). Reanalysis combines 

model data with observations from across the world into a globally complete and consistent 

dataset using the laws of physics (ECMWF).” It provides the relevant data computed daily at 

12 PM GMT. 

The data set of the detected wildfires that includes about 1.8 million records, is generated 

by USDA (United States Department of Agriculture) through which the data from 1992 to 

2015 was extracted (https://www.fs.usda.gov/rds/archive/catalog/RDS-2013-0009.4) 

About one third of the land surfaces of the world are covered by forests. They are 

categorized based on their distance from the equator. There are different types of forests, but 

some share common traits based on the local climate. There are four categories into which 

forests can fit: tropical, subtropical, temperate, and boreal. 

We focused on the United States of America forest due to complete and accessibility of 

this data over the years from 1992 to 2015. 

The wildfires occurred in tropical forests were out of the scope and hence were excluded 

from the data, while the fires occurred in Alaska are taken to happen in boreal forest and the 

others in other states to happen in temperate forest. Therefore, about 18204 wildfires 

happened in temperate and boreal forests. In order to introduce the non-fire cases, the weather 

condition of 30 days before each fire case is assumed as non-fire case. 

https://www.fs.usda.gov/rds/archive/catalog/RDS-2013-0009.4
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(a) Wildfires in all states of U.S (except Alaska) 

 

 
(b) Wildfires in Alaska 

Fig 1. The map of USA and wildfire location from 1992 to 2015 

 

We take temperature at 2 meters above surface, relative humidity, total pressure, evaporation, 

volumetric soil water layer 1, snow melt, Keetch–Byram drought index (described in Table 1), 

total precipitation, wind speed (along U and V direction), and NDVI (described in Table 1) as 11 

effective independent variables. The variables are described in Table 1. 
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Table 1: Meteorological variables used in this study 

Parameter name Unit Description 

Relative Humidity % 

At saturation point, water vapor has equilibrium vapor pressure. 

Relative humidity shows the ration of actual vapor pressure over 

equilibrium vapor pressure at a given temperature. 

Keetch-Byram 

drought index 
Dimensionless 

The Keetch-Byram drought index (KBDI) is a number representing 

the net effect of evapotranspiration and precipitation in producing 

cumulative moisture deficiency in deep duff and upper soil layers. It is 

a continuous index, relating to the flammability of organic material in 

the ground. It is a closed system ranging from 0 to 200 units and 

represents a moisture regime from 0 to 20 cm of water through the soil 

layer. At 20 cm of water, the Keetch-Byram drought index assumes 

saturation. Zero is the point of no moisture deficiency and 200 is the 

maximum drought that is possible. At any point along the scale, the 

index number indicates the amount of net rainfall that is required to 

reduce the index to zero, or saturation (Hersbach, H. et al., 2020). 

There is a direct correlation between upper soil moisture deficiency 

and wildfire risk and The Keetch-Byram drought index (KBDI) was 

introduced this purpose. 

Wind speed  
 ⁄  

Wind speed in both directions are examined in this study. The U and 

V parameters show wind speed in eastward direction and northward 

direction respectively. A negative value means the direction of wind 

in the opposite direction stated in the definition. 

2m temperature K Temperature at 2 meters above surface 

Evaporation 
m of water 

equivalent 

The amount of evaporated water from the Earth's surface is 

accumulated in the parameter. It also includes transpiration. 

NDVI (Normalized 

Difference 

Vegetation Index) 

Dimensionless 

NDVI is a measure of plant health and density. The index is computed 

using remote sensing images. the range of NDVI is between -1 to +1. 

Values close to +1 shows healthy and dense vegetation. 

Total pressure Pa 
Atmospheric pressure of air at a specific elevation which is also 

known as barometric pressure. 

Volumetric soil 

water layer 1 
  

  ⁄  

Based on ECMWF Integrated Forecasting System model, layer 1 of 

soil includes top 7 cm layer from surface. The volumetric soil water 

shows the volume of water in the soil layer 

Snowmelt 
m of water 

equivalent 

It shows how much water the snowpack contains. It is also known as 

Snow Water Equivalent (SWE). In other words, the water acquired 

from melting entire snowpack equals SWE. 

Total Precipitation m 
This parameter shows total amount of water either as rain or snow 

falling on the surface 

 

In the first step, data was normalized by the "standard score" method. 
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The architecture of proposed Artificial neural networks (ANN) includes one hidden layer 

and one output layer. 60% of data is used for training, 20% for validation and 20% for testing. 

You can find the schematic diagram of ANN in Fig 2. A two-layer feed-forward network with 

sigmoid hidden neurons and linear output neurons, can fit multi-dimensional mapping 

problems arbitrarily well.  The network is trained with Levenberg-Marquardt backpropagation 

algorithm, in which case scaled conjugate gradient backpropagation is used. 

 

 
Fig 2. ANN Schematic Diagram 

 

The model was developed to predict wildfire cases based on temperature variation. The 

dataset used for train, validation, and test of the model was provided by the history record of 

wildfires in US from 1992 to 2015 (Karen C., 2017). The large, destructive, uncontrolled, 

quick (rapid spread), self-Induced, unplanned, and unwanted wildfire cases were selected 

which include 18204 cases. The same number of non-fire cases were also extracted; it is 

assumed no fire has occurred one month before each 18204 records extracted as the wildfire 

cases at the same location. Both 18204 wildfire cases and 18204 non-fire cases were imported 

to the ANN. All cases were categorized based on their forest type (whether temperate or 

boreal) and processed separately. 

The predictive variables including temperature (at 2 meters above surface), relative 

humidity, absolute pressure, evaporation, soil moisture, snow storage, Keetch–Byram drought 

index, precipitation, wind speed, and NDVI were taken from ECMWF (European Centre for 

Medium-Range Weather Forecasts); the full data is available online. The difference between 

each parameter and the past 7-day average before fire start was computed; except for NDVI. 

Due to small variation of NDVI during 7 days, its 7-day average was directly used in the 

model. Each parameter was normalized using the following formula: 

 
            

       
 (1) 

 

The same process was performed for parameters of non-fire cases. 

The ANN model was independently trained for each forest type (temperate or boreal). 

The model should predict fire spots based on weather data to supply basic information 
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decisive for relevant organizations to take necessary actions required for fire management. 

The model output is a decimal number which can be interpreted as the potential of fire 

occurrence. The values greater than or equal to 1 states absolute fire while the values less than 

or equal to 0 states there is definitely no fire. The range between 0 and 1 is divided to three 

parts: 

a. For values greater than or equal to 0.8, a warning attention should be sent to responsible 

organizations. 

b. No attention is necessary for values less than 0.5. 

c. The points with values between 0.5 and 0.8 should be monitored during the next few 

days. 

 

RESULTS AND DISCUSSION 

 

Among the different algorithms in ANN, Levenberg-Marquartdt had the best performance 

with regression factor of 9.8e-1 and MSE of 1.01e-2. Half of the data set related to temperate 

forests were used for network training; 25 percent of the data set were used in validation and 

the rest were used for testing step. Fig 3 represents regression in each step. 

 

 
Fig 3. The correlation between outputs and targets of ANN model for Temperate Forests 
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The error status during model development is represented in Fig 4. 

 

 
Fig 4. Error Status of ANN model for Temperate Forests 

 

With regression factor of 9.55e-1 and MSE of 2.21e-2, Levenberg-Marquartdt algorithm 

had the best performance for prediction model development of boreal forests. Sixty percent of 

the data set related to boreal forests were used for network training; 20 percent of the data set 

were used in validation and the rest were used for testing step. Fig 5 represents regression in 

each step. 
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Fig 5. The correlation between outputs and targets of ANN model for Boreal Forests 

 

The error status during model development is represented in Fig 6. 

 

 
Fig 6. Error Status of ANN model for Boreal  Forests 
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The sensitivity of the models to temperature variation was analyzed based on non-fire 

record data sets. For the sensitivity analysis, temperature was increased by 0.1 to 3 degrees of 

Celsius from past 7-day average value. 

A 0.1-degree Celsius increase in temperature relative to 7-day average temperature before 

a fire occurrence results in prediction model output of greater than 0.8 for 4.75% of fire forest 

cases. The model output chart for each 0.1 degree Celsius increment is plotted in the Fig 7. 

 

 
Fig 7. Model output for temperature increments in Temperate Forests 

 
A linear regression was fit to the chart with regression factor of 0.76. 

The average temperature during days with fire occurrence is 14.37 degree of Celsius and is 

1.06 degree higher than the 7-day average temperature before fire occurrence which is equal 

to 13.31 degree of Celsius. Moreover, the Fig 7 shows a 1.1 degree increase in temperature 

relative to the past 7-day average results in 50% of wildfire occurrence. 

The curve starts to grow on 0.5-degree increase, and it has the highest growth rate between 

0.8 & 1.2 degree increase. Almost 90% of the fire cases have the prediction model output of 

greater than 0.8 that means serious fire threat if the temperature increase is higher than 1.3 

degree. 
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The model output for temperature increase of less than 1 degree relative to past 7-day 

average temperature represents no chance of wildfire in boreal forests. But the non-zero fire 

forest starts at 2 degrees increase of temperature which ends to 2.62% of fire forest cases with 

model output of larger than 0.8. The model output chart for each 0.1 degree Celsius increment 

is plotted in the Fig 8. 

 

 
Fig 8. Model output for temperature increments in Boreal Forests 

 

A linear regression was fit to the chart with regression factor of 0.87. 

The average temperature during days with fire occurrence is 13.78 degree of Celsius and is 

0.98 degree higher than the 7-day average temperature before fire occurrence which is equal 

to 12.79 degree of Celsius. Moreover, the Fig 8 shows a 2.8 degree increase of temperature 

relative to the past 7-day average results in 50% of wildfire occurrence. 

The curve starts to grow on 1 to 2 degrees increase, and it has the highest growth rate 

between 2.5 and 2.8 degrees increase. Almost 90% of the fire cases have the prediction model 

output of greater than 0.8 which means serious fire threat if the temperature increase is higher 

than 3.5 degree. 

These data can be compared with recent studies. In a 2021 study in Victoria, Australia 
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fifteen factors including temperature were selected as input to 3 models in order to produce 

daily maps of the probability of a wildfire over the next 7 days (Bergado et al., 2021). 

Their models showed higher accuracy for predicting wildfires for the next 7 days than 

previous studies done in Australia. They also suggest development of similar methods to 

encode information on the probability that a location would experience an ignition. Future 

works on incorporating temporal information, accepting as inputs and producing as outputs 

sequences, would be relevant (Bergado et al., 2021).  

In another study, different neural networks were used for wildfire susceptibility. They 

concluded that explanatory variables such as maximum temperature, soil temperature, 

normalized difference vegetation index (NDVI) and accumulated precipitation have a large 

impact on the model (Zhang et al, 2021). 

A study were done to investigate the burned area interannual variability (IAV) and its 

climatic sensitivity globally and across nine biomes from 1997 to 2018. We found that 

tropical savannas, tropical forests, and semi-arid grasslands near deserts were primary 

contributors to the global burned area IAV, collectively accounting for 71.7%-99.7% of the 

global wildfire IAV estimated by satellite observations. They also found that precipitation 

was a major fire suppressing factor and dominated the global and regional burned area IAVs, 

and temperature and shortwave solar radiation were mostly positively related with burned 

area IAVs (Tang et al., 2021).  

It is suggested that by developing neural networks models, we can help the world to predict 

wildfires as early enough as wildfires can be managed and controlled better. 

 

CONCLUSION 

 

Based on model outputs and fire percentage occurrence in charts of Fig 7 and Fig 8, a 

temperature interval can be introduced as “transient temperature span”  for each forest type. 

There is high fire occurrence probability if the temperature increase is larger than the transient 

temperature span during a period of less than 7 days. 

In other words, weather forecast in a region is useful to detect fire hazard for the next 7 

days. The detection of fire hazard is crucial for responsible organizations to get prepared and 

manage the resources. The input variables to the model include temperature, absolute 

pressure, relative humidity, wind speed, evaporation, Keetch-Byram Drought Index, NDVI, 

soil surface moisture, snow storage, and precipitation. 

The transient temperature span is about 0.8 to 1.2 degrees for temperate forests and about 

2.5 to 2.8 degrees for boreal forests. 

The similarity of the two curves in Fig 7 and Fig 8 suggests that temperature increase is 
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one of the most important causes of wildfires. Moreover, with low values of temperature 

increase, other input variables have a lot more contributory role in fire prediction rather than 

temperature. Their roles and their magnitude are suggested in future study. 

It is concluded that other variables except temperature are more determinant to predict 

wildfires in temperate forests rather than in boreal forests. On the contrary, with temperature 

increase greater than transient temperature span, the wildfire is mostly dependent on 

temperature while other variables may have less important effect on the model output. Like 

before, with low temperature increase, it is suggested to focus study on variables other than 

temperature in boreal forests. 

So, there is a positive linear relationship between wildfire occurrence and temperature 

increase. Using weather parameters, it is possible to model the relationship and predict fire 

cases affected by global warming. 
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