Oxidative Stress Induction in Cassava Plant (Manihot Esculenta Crantz) Grown on Soil Contaminated with Diesel

Document Type : Original Research Paper

Authors

1 Department of Biochemistry, University of Lagos, PMB 12003 Lagos, Nigeria

2 Environmental Biotechnology Laboratory, Department of Biochemistry, Redeemer’s University, PMB 230 Ede, Osun State, Nigeria African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer’s University, P.M.B 230, Ede, 232101, Osun State, Nigeria

Abstract

The induction of oxidative stress in plants grown on crude oil-contaminated soils was investigated using a diesel contaminated soils model. Twelve cassava stems were grown in four garden pots containing different amounts of diesel oil as contaminants: 150 ppm, 300 ppm, 600 ppm and control (0 ppm). The growth of the plants was monitored for 12 weeks, after which chlorophyll contents, total proteins, lipid peroxidation and activities of catalase, glutathione, and superoxide dismutase (antioxidant enzymes) were determined from the leaves. Significant decreases (p<0.05) were observed in the antioxidant enzymes (67-86%), total proteins (79%) and total chlorophyll content (67%) in the cassava grown on diesel contaminated soil (600 ppm) compared to the control. Consequently, there were significant increase (p<0.05) in the leaf ratio and malondialdehyde (a marker for lipid peroxidation) 0.1909 ± 04 and 1.77 ± 0.34, when compared to the control 0.1530 ± 08 sq.cm/g and 0.10±0.01 µmol/mg protein respectively. It was thus concluded that stunted growth of plants and their death in diesel or crude oil contaminated soil could be traced to oxidative stress.

Keywords


Arnon, D T. (1949). Copper enzymes in isolated chloroplasts: polyphenol oxidase in Beta vulgaris. Plant Physiol., 24(1); 1-15.
Athar, H., Ambreen, S., Javed, M., Hina, M., Rasul, S., Zafar, Z.U., Manzoor, H., Ogbaga, C.C., Afzal, M. and Al-Qurainy, F. (2015). Influence of sub-lethal crude oil concentration on growth, water relations and photosynthetic capacity of maise (Zea mays L.) plants. Environ. Sci. Pollut. Res., 23(18); 18320–18331.
Buege, J. A. and Aust, S.D. (1978). Microsomal lipid peroxidation. Methods Enzymol., 52; 302-310.
Feng, G. (2006). Effects of single pollution of the different density mercury, lead and chromium on physiological and biochemical indexes of mung bean. J. Shanxi Agric. Univ., 3; 382-387.
Foyer, C.H., Neukermans, J., Queval, G., Noctor, G. and Harbinson, J. (2012).  Photosynthetic control of electron transport and the regulation of gene expression. J. Exp. Bot., 63(4); 1637-1661.
Fulekar, M. H. (2017). Microbial degradation of petrochemical waste-polycyclic aromatic hydrocarbons. Bioresour. Bioprocess., 4(1); 1–16.
Gornall, A. G., Bardawill, C. J. and David, M. M. (1949). Determination of Serum Proteins by means of the Biuret Reaction. J. Biol. Chem., 177(2); 751-766.
Jamhari, A. A., Sahani, M., Latif, M. T., Chan, K. M., Tan, H. S., Khan, M. F. and Tahir, N.M. (2014). Concentration and source identification of polycyclic aromatic hydrocarbons (PAHs) in PM10 of urban, industrial and semi-urban areas in Malaysia. Atmospheric Environ., 86; 16–27.
Kang, J. and Van Lersel, M. W. (2004). Nutrient solution concentration affects shoot: root ratio, leaf area ratio and growth of sub-irrigated salvia (Salvia spendens). Horticul. Sci., 39(1); 49-54.
Khoubnasabjafari, M., Ansari, K. and Jouyban, A., (2015). Reliability of malondialdehyde as a biomarker of oxidative stress in psychological disorders, Bioimpacts., 5(3); 123–127.
Li, S., Cui, Y., Zhou, Y., Luo, Z., Liu, J. and Zhao, M. (2017). The industrial applications of cassava: current status, opportunities and prospects. J. Sci. Food. Agric., 97(8); 2282-2290.
Lucas, J.A., Gutierrez-Albanchez, E., Alfaya, T., Feo-Brito F. and Gutierrez-Mañero, F. J. (2019). Oxidative stress in ryegrass growing under different air pollution levels and its likely effects on pollen allergenicity. Plant. Physio. Biochem., 135; 331–340.
Merkl, N., Schultze-Kraft, R. and Infante, C. (2004). Phytoremediation in the the Tropics: Effect of Crude Oil on the Growth of Tropical Plants. Bioremed. J., 8(3-4); 177–184.
Mitra, E., Ghosh, A.K., Ghosh, D., Mukherjee, D., Chattopadhyay, A., Dutta, S., Pattari, S. K., Bandyopadhyay, D. (2012). Protective effect of aqueous Curry leaf (Murraya koenigii) extracts against cadmium-induced oxidative stress in rat heart. Food Chem. Toxicol., 50(5); 1340–1353.
Mitter, E.K., Germida, J.J. and De Freitas, J.R.  (2021). Impact of diesel and biodiesel contamination on soil microbial community activity and structure. Sci. Rep., 11; 10856.
Mupakati, T. and Tanyanyiwa, V.I. (2017). Cassava production as a climate change adaptation strategy in Chilonga Ward, Chiredzi District, Zimbabwe. Jàmbá, 9(1); 348.
Njoku, K. L., Akinola, M. O., Taiwo, B. G. (2009). Effect of gasoline diesel fuel mixture on the germination and the growth of Vigna unguiculata (Cowpea). African J. Environ. Sci. Technol., 3(12); 466–471.
Noori, A., Maivan, H.Z., Alaie, E. and Newman, L.A. (2015). Leucanthemum vulgare Lam. crude oil phytoremediation. Int. J. Phytoremed., 20(13); 1292–1299.
Nwose, E.U., Onodu, B.C., Anyasodor, A.E., Sedowo, M.O., Okuzor, J.N. and Culas, R.J. (2017). Ethnopharmacological values of cassava and its potential for diabetes and dyslipidemia management: Knowledge survey and critical review of report. J. Intercultur. Ethnopharmacol., 6(3); 260–266.
Odukoya, J., Lambert, R. and Sakrabani, R. (2019). Understanding the impacts of crude oil and its induced abiotic stresses on agro-food production: A review. Horticulturae5(2); 47.
Omosun, G., Markson, A. A. and Mbanasor, O. (2008). Growth and Anatomy of Amaranthus hybridus as Affected by Different Crude Oil Concentrations. American-Eurasian J. Sci. Res., 3(1); 70–74.
Pandey, S., Fartyal, D., Agarwal, A., Shukla, T., James, D., Kaul, T., Negi, Y.K., Arora, S., Reddy, M.K. (2017). Abiotic stress tolerance in plants: myriad roles of ascorbate peroxidase. Frontiers Plant Sci., 8; 581.
Sedlak, J. and Lindsay, R. H. (1968). Estimation of total protein, bound-protein, and non-protein sulfhydryl groups in tissue with Ellman’s reagents. Anal. Biochem. 25(1); 1192–1205.
Singha, A. K. (1972). Colorimetric assay of catalase. Anal. Biochem., 47(2); 389–394.
Sun, M., Zigma, S. (1978). An improved spectrophotometric assay of superoxide dismutase based on epinephrine antioxidation. Anal. Biochem., 90(1); 81–89.
Sun, Y., Xu, J., Miao, X. et al., Lin, X., Liu, W. and Ren H. (2021). Effects of exogenous silicon on maize seed germination and seedling growth. Sci. Rep., 11; 1014.
Tola, A.J., Jaballi, A. and Missihoun, T.D. (2021). Protein Carbonylation: Emerging Roles in Plant Redox Biology and Future Prospects. Plants., 10(7); 1451.
Umar, A. T. and Othman, M.S.H. (2017). Causes and consequences of crude oil pipeline vandalism in the Niger Delta region of Nigeria: A confirmatory factor analysis approach. Cogent Econ. Finan., 5(1); 1.
Wang, J., Liu, X., Zhang, X., Liang, X., Zhang, W. (2011). Growth response and phytoremediation ability of Reed for diesel contaminant.  2nd Inter. Conf. Environ. Sci. Technol., 6; 233–237.
Wu, B.,  Lan, T.,  Lu, D. and   Liu, Z. (2014). Ecological and enzymatic responses to petroleum contamination. Environ. Sci. Proces. Impacts., 16(6); 1501–1509.
Wyszokowski, M. and Ziolkowska A. (2008). Effect of Petrol and Diesel oil on content of organic carbon and mineral components in soil. American-Eurasian J. Sust. Agric., 2; 54–60.
Wyszkowski, M., Wyszkowska, J., Borowik, A. and Kordala, N. (2020). Contamination of Soil with Diesel Oil, Application of Sewage Sludge and Content of Macroelements in Oats. Water Air Soil Pollut., 231(11); 546.
Xie, X., He, Z., Chen, N., Tang, Z., Wang, Q. and Cai, Y. (2019). The Roles of Environmental Factors in Regulation of Oxidative Stress in Plant. BioMed Res. Inter., 2019; 9732325.
Zarinkamar, F., Reypour, F. and Soleimanpour, S. (2013). Effect of diesel fuel contaminated soil on the germination and the growth of Festuca arundinacea. Res. J. Chem. Environ. Sci., 1(2); 37–41.