Afkhami, A., Saber-Tehrani, M. and Bagheri, H. (2010). Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2, 4-dinitrophenylhydrazine. Journal of hazardous materials 181: 836-844.
Afluq, S. G., Hachim, M. F., Ibrahim, Z. K. and Alalwan, H. A. (2021). Reinforcing the mechanical properties of windshield with interlayer-polycarbonates glass composite. Journal of Engineering Science and Technology 16: 4192-4204.
Al-Furaiji, M., Kadhom, M., Kalash, K., Waisi, B. and Albayati, N. (2020). Preparation of TFC Membranes Sup-ported with Elelctrospun Nanofibers for Desalination by Forward Osmosis. Drink. Water Eng. Sci. Discuss 2020: 1-17.
Al-Furaijia, M. H., Kalasha, K. R., Kadhomb, M. A. and Alsalhyc, Q. F. (2021). Evaluation of polyethersulfone microfiltration membranes embedded with MCM-41 and SBA-15 particles for turbidity removal. DESALINATION AND WATER TREATMENT 215: 50-59.
Alalwan, H. and Alminshid, A. (2020). An in-situ DRIFTS study of acetone adsorption mechanism on TiO2 nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 229: 117990.
Alalwan, H. A. and Alminshid, A. H. (2021). CO2 Capturing Methods: Chemical Looping Combustion (CLC) as a Promising Technique. Science of The Total Environment 788: 147850.
Alalwan, H. A., Augustine, L. J., Hudson, B. G., Abeysinghe, J. P., Gillan, E. G., Mason, S. E., Grassian, V. H. and Cwiertny, D. M. (2021a). Linking Solid-State Reduction Mechanisms to Size-Dependent Reactivity of Metal Oxide Oxygen Carriers for Chemical Looping Combustion. ACS Applied Energy Materials 4: 1163-1172.
Alalwan, H. A., Mohammed, M. M., Sultan, A. J., Abbas, M. N., Ibrahim, T. A., Aljaafari, H. A. and Alminshid, A. A. (2021b). Adsorption of methyl green stain from aqueous solutions using non-conventional adsorbent media: Isothermal kinetic and thermodynamic studies. Bioresource Technology Reports 14: 100680.
Alansi, A. M., Al-Qunaibit, M., Alade, I. O., Qahtan, T. F. and Saleh, T. A. (2018). Visible-light responsive BiOBr nanoparticles loaded on reduced graphene oxide for photocatalytic degradation of dye. Journal of Molecular Liquids 253: 297-304.
Ali, I. and Aboul-Enein, H. Y. (2004). "Chiral pollutants: Distribution, toxicity and analysis by chromatography and capillary electrophoresis," John Wiley & Sons.
Alminshid, A. H., Abbas, M. N., Alalwan, H. A., Sultan, A. J. and Kadhom, M. A. (2021). Aldol condensation reaction of acetone on MgO nanoparticles surface: An in-situ drift investigation. Molecular Catalysis 501: 111333.
Álvarez-Torrellas, S., Rodríguez, A., Ovejero, G. and García, J. (2016). Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials. Chemical Engineering Journal 283: 936-947.
Amrane, A., Assadi, A. A., Nguyen-Tri, P., Nguyen, T. A. and Rtimi, S. (2020). "Nanomaterials for Air Remediation," Elsevier.
Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. and Taga, Y. (2001). Visible-light photocatalysis in nitrogen-doped titanium oxides. science 293: 269-271.
Bazrafshan, E., Mostafapour, F. K., Hosseini, A. R., Raksh Khorshid, A. and Mahvi, A. H. (2013). Decolorisation of reactive red 120 dye by using single-walled carbon nanotubes in aqueous solutions. Journal of chemistry 2013.
Bradder, P., Ling, S. K., Wang, S. and Liu, S. (2011). Dye adsorption on layered graphite oxide. Journal of Chemical & Engineering Data 56: 138-141.
Cao, C.-Y., Cui, Z.-M., Chen, C.-Q., Song, W.-G. and Cai, W. (2010). Ceria hollow nanospheres produced by a template-free microwave-assisted hydrothermal method for heavy metal ion removal and catalysis. The Journal of Physical Chemistry C 114: 9865-9870.
Chen, H., Gao, B. and Li, H. (2015). Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide. Journal of hazardous materials 282: 201-207.
Chen, Y.-H. and Li, F.-A. (2010). Kinetic study on removal of copper (II) using goethite and hematite nano-photocatalysts. Journal of colloid and interface science 347: 277-281.
De France, K. J., Hoare, T. and Cranston, E. D. (2017). Review of hydrogels and aerogels containing nanocellulose. Chemistry of Materials 29: 4609-4631.
Dehghani, M. H., Yetilmezsoy, K., Salari, M., Heidarinejad, Z., Yousefi, M. and Sillanpää, M. (2020). Adsorptive removal of cobalt (II) from aqueous solutions using multi-walled carbon nanotubes and γ-alumina as novel adsorbents: Modelling and optimization based on response surface methodology and artificial neural network. Journal of Molecular Liquids 299: 112154.
Deliyanni, E., Peleka, E. and Matis, K. (2009). Modeling the sorption of metal ions from aqueous solution by iron-based adsorbents. Journal of Hazardous materials 172: 550-558.
Ding, J., Li, Q., Xu, X., Zhang, X., Su, Y., Yue, Q. and Gao, B. (2018). A wheat straw cellulose-based hydrogel for Cu (II) removal and preparation copper nanocomposite for reductive degradation of chloramphenicol. Carbohydrate polymers 190: 12-22.
Engates, K. E. and Shipley, H. J. (2011). Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion. Environmental Science and Pollution Research 18: 386-395.
Gao, Y., Li, Y., Zhang, L., Huang, H., Hu, J., Shah, S. M. and Su, X. (2012). Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. Journal of colloid and interface science 368: 540-546.
Gautam, P. K., Singh, A., Misra, K., Sahoo, A. K. and Samanta, S. K. (2019). Synthesis and applications of biogenic nanomaterials in drinking and wastewater treatment. Journal of environmental management 231: 734-748.
Gautam, R. K. and Chattopadhyaya, M. C. (2016). "Nanomaterials for wastewater remediation," Butterworth-Heinemann.
Ghadim, E. E., Manouchehri, F., Soleimani, G., Hosseini, H., Kimiagar, S. and Nafisi, S. (2013). Adsorption properties of tetracycline onto graphene oxide: equilibrium, kinetic and thermodynamic studies. PLoS One 8, e79254.
Gharekhani, H., Olad, A., Mirmohseni, A. and Bybordi, A. (2017). Superabsorbent hydrogel made of NaAlg-g-poly (AA-co-AAm) and rice husk ash: Synthesis, characterization, and swelling kinetic studies. Carbohydrate polymers 168: 1-13.
Ghasemzadeh, G., Momenpour, M., Omidi, F., Hosseini, M. R., Ahani, M. and Barzegari, A. (2014). Applications of nanomaterials in water treatment and environmental remediation. Frontiers of environmental science & engineering 8: 471-482.
Grossl, P. R., Sparks, D. L. and Ainsworth, C. C. (1994). Rapid kinetics of Cu (II) adsorption/desorption on goethite. Environmental science & technology 28: 1422-1429.
Gupta, S. S. and Bhattacharyya, K. G. (2012). Adsorption of heavy metals on kaolinite and montmorillonite: a review. Physical Chemistry Chemical Physics 14: 6698-6723.
Hao, L., Song, H., Zhang, L., Wan, X., Tang, Y. and Lv, Y. (2012). SiO2/graphene composite for highly selective adsorption of Pb (II) ion. Journal of colloid and interface science 369: 381-387.
Hoffmann, M. R., Martin, S. T., Choi, W. and Bahnemann, D. W. (1995). Environmental applications of semiconductor photocatalysis. Chemical reviews 95: 69-96.
Hosseinzadeh, H., Pashaei, S., Hosseinzadeh, S., Khodaparast, Z., Ramin, S. and Saadat, Y. (2018). Preparation of novel multi-walled carbon nanotubes nanocomposite adsorbent via RAFT technique for the adsorption of toxic copper ions. Science of the Total Environment 640: 303-314.
Hu, C., Jimmy, C. Y., Hao, Z. and Wong, P. K. (2003). Photocatalytic degradation of triazine-containing azo dyes in aqueous TiO2 suspensions. Applied Catalysis B: Environmental 42: 47-55.
Hu, J., Chen, G. and Lo, I. M. (2006). Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: performance and mechanisms. Journal of environmental engineering 132: 709-715.
Hu, X.-j., Liu, Y.-g., Wang, H., Chen, A.-w., Zeng, G.-m., Liu, S.-m., Guo, Y.-m., Hu, X., Li, T.-t. and Wang, Y.-q. (2013). Removal of Cu (II) ions from aqueous solution using sulfonated magnetic graphene oxide composite. Separation and purification technology 108: 189-195.
Hu, X.-j., Liu, Y.-g., Zeng, G.-m., You, S.-h., Wang, H., Hu, X., Guo, Y.-m., Tan, X.-f. and Guo, F.-y. (2014). Effects of background electrolytes and ionic strength on enrichment of Cd (II) ions with magnetic graphene oxide–supported sulfanilic acid. Journal of colloid and interface science 435: 138-144.
Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L. and Zhang, Q. (2012). Heavy metal removal from water/wastewater by nanosized metal oxides: a review. Journal of hazardous materials 211: 317-331.
Hur, J., Shin, J., Yoo, J. and Seo, Y.-S. (2015). Competitive adsorption of metals onto magnetic graphene oxide: comparison with other carbonaceous adsorbents. The Scientific World Journal 2015.
Hwang, D. W., Kim, J., Park, T. J. and Lee, J. S. (2002). Mg-doped WO3 as a novel photocatalyst for visible light-induced water splitting. Catalysis Letters 80: 53-57.
Kadhom, M., Kalash, K. and Al-Furaiji, M. (2022). Performance of 2D MXene as an adsorbent for malachite green removal. Chemosphere 290: 133256.
Kalash, K., Kadhom, M. and Al-Furaiji, M. (2020a). Thin film nanocomposite membranes filled with MCM-41 and SBA-15 nanoparticles for brackish water desalination via reverse osmosis. Environmental Technology & Innovation 20: 101101.
Kalash, K. R., Al-Furaiji, M. H., Waisi, B. and Ali, R. A. (2020b). Evaluation of adsorption performance of phenol using non-calcined Mobil composition of matter no. 41 particles. Desalin. Water Treat. 198: 232-240.
Kormann, C., Bahnemann, D. W. and Hoffmann, M. R. (1991). Photolysis of chloroform and other organic molecules in aqueous titanium dioxide suspensions. Environmental science & technology 25: 494-500.
Kumar, A., Kumar, S., Bahuguna, A., Kumar, A., Sharma, V. and Krishnan, V. (2017). Recyclable, bifunctional composites of perovskite type N-CaTiO3 and reduced graphene oxide as an efficient adsorptive photocatalyst for environmental remediation. Materials Chemistry Frontiers 1: 2391-2404.
Kumar, S., Nair, R. R., Pillai, P. B., Gupta, S. N., Iyengar, M. and Sood, A. K. (2014). Graphene oxide–MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water. ACS applied materials & interfaces 6: 17426-17436.
Lee, Y.-C. and Yang, J.-W. (2012). Self-assembled flower-like TiO2 on exfoliated graphite oxide for heavy metal removal. Journal of industrial and engineering chemistry 18: 1178-1185.
Li, W., Li, D., Meng, S., Chen, W., Fu, X. and Shao, Y. (2011). Novel Approach To Enhance Photosensitized Degradation of Rhodamine B under Visible Light Irradiation by the Zn x Cd 1-x S/TiO2 Nanocomposites. Environmental science & technology 45: 2987-2993.
Li, Y.-H., Wang, S., Wei, J., Zhang, X., Xu, C., Luan, Z., Wu, D. and Wei, B. (2002). Lead adsorption on carbon nanotubes. Chemical Physics Letters 357: 263-266.
Liu, F., Chung, S., Oh, G. and Seo, T. S. (2012a). Three-dimensional graphene oxide nanostructure for fast and efficient water-soluble dye removal. ACS applied materials & interfaces 4: 922-927.
Liu, Z., Xu, X., Fang, J., Zhu, X., Chu, J. and Li, B. (2012b). Microemulsion synthesis, characterization of bismuth oxyiodine/titanium dioxide hybrid nanoparticles with outstanding photocatalytic performance under visible light irradiation. Applied Surface Science 258: 3771-3778.
Lou, J. C., Jung, M. J., Yang, H. W., Han, J. Y. and Huang, W. H. (2011). Removal of dissolved organic matter (DOM) from raw water by single-walled carbon nanotubes (SWCNTs). Journal of Environmental Science and Health, Part A 46: 1357-1365.
Lu, C. and Liu, C. (2006). Removal of nickel (II) from aqueous solution by carbon nanotubes. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology 81: 1932-1940.
Ma, J., Yang, M., Yu, F. and Zheng, J. (2015). Water-enhanced removal of ciprofloxacin from water by porous graphene hydrogel. Scientific reports 5: 1-10.
Ma, J., Yu, F., Zhou, L., Jin, L., Yang, M., Luan, J., Tang, Y., Fan, H., Yuan, Z. and Chen, J. (2012). Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes. ACS applied materials & interfaces 4: 5749-5760.
Ma, X., Wang, Y., Gao, M., Xu, H. and Li, G. (2010). A novel strategy to prepare ZnO/PbS heterostructured functional nanocomposite utilizing the surface adsorption property of ZnO nanosheets. Catalysis Today 158: 459-463.
Madadrang, C. J., Kim, H. Y., Gao, G., Wang, N., Zhu, J., Feng, H., Gorring, M., Kasner, M. L. and Hou, S. (2012). Adsorption behavior of EDTA-graphene oxide for Pb (II) removal. ACS applied materials & interfaces 4: 1186-1193.
Mamy, L., Patureau, D., Barriuso, E., Bedos, C., Bessac, F., Louchart, X., Martin-Laurent, F., Miege, C. and Benoit, P. (2015). Prediction of the fate of organic compounds in the environment from their molecular properties: a review. Critical reviews in environmental science and technology 45: 1277-1377.
Manyangadze, M., Chikuruwo, N., Chakra, C., Narsaiah, T., Radhakumari, M. and Danha, G. (2020). Enhancing adsorption capacity of nano-adsorbents via surface modification: A review. South African Journal of Chemical Engineering 31: 25-32.
Matschullat, J. (2000). Arsenic in the geosphere—a review. Science of the Total Environment 249: 297-312.
Mehrizad, A., Aghaie, M., Gharbani, P., Dastmalchi, S., Monajjemi, M. and Zare, K. (2012). Comparison of 4-chloro-2-nitrophenol adsorption on single-walled and multi-walled carbon nanotubes. Iranian journal of environmental health science & engineering 9: 1-6.
Mohammed Ali, N. S., Alalwan, H. A., Alminshid, A. H. and Mohammed, M. M. (2022). Synthesis and Characterization of Fe3O4-SiO2 Nanoparticles as Adsorbent Material for Methyl Blue Dye Removal from Aqueous Solutions. Pollution 8: 295-302.
Mohammed, M. M., Ali, N. S. M., Alalwan, H. A., Alminshid, A. H. and Aljaafari, H. A. (2021). Synthesis of ZnO-CoO/Al2O3 nanoparticles and its application as a catalyst in ethanol conversion to acetone. Results in Chemistry 3: 100249.
Montallana, A. D. S. and Vasquez Jr, M. R. (2021). Fabrication of PVA/Ag-TiO2 nanofiber mats for visible-light-active photocatalysis. Results in Physics 25: 104205.
Moradi, O. (2013). Adsorption behavior of basic red 46 by single-walled carbon nanotubes surfaces. Fullerenes, Nanotubes and Carbon Nanostructures 21: 286-301.
Munirasu, S., Haija, M. A. and Banat, F. (2016). Use of membrane technology for oil field and refinery produced water treatment—A review. Process safety and environmental protection 100: 183-202.
Nandi, D., Basu, T., Debnath, S., Ghosh, A. K., De, A. and Ghosh, U. C. (2013). Mechanistic insight for the sorption of Cd (II) and Cu (II) from aqueous solution on magnetic mn-doped Fe (III) oxide nanoparticle implanted graphene. Journal of Chemical & Engineering Data 58: 2809-2818.
Nasrollahzadeh, M., Sajjadi, M., Iravani, S. and Varma, R. S. (2021). Green-synthesized nanocatalysts and nanomaterials for water treatment: Current challenges and future perspectives. Journal of Hazardous Materials 401: 123401.
Ndolomingo, M. J., Bingwa, N. and Meijboom, R. (2020). Review of supported metal nanoparticles: synthesis methodologies, advantages and application as catalysts. Journal of Materials Science 55: 6195-6241.
Ollis, D. F., Hsiao, C.-Y., Budiman, L. and Lee, C.-L. (1984). Heterogeneous photoassisted catalysis: conversions of perchloroethylene, dichloroethane, chloroacetic acids, and chlorobenzenes. Journal of catalysis 88: 89-96.
Pinho, L., Elhaddad, F., Facio, D. S. and Mosquera, M. J. (2013). A novel TiO2–SiO2 nanocomposite converts a very friable stone into a self-cleaning building material. Applied Surface Science 275: 389-396.
Pradeep, T. (2009). Noble metal nanoparticles for water purification: a critical review. Thin solid films 517: 6441-6478.
Punia, P., Bharti, M. K., Chalia, S., Dhar, R., Ravelo, B., Thakur, P. and Thakur, A. (2021). Recent advances in synthesis, characterization, and applications of nanoparticles for contaminated water treatment-a review. Ceramics International 47: 1526-1550.
Rahman, Z. U., Wei, N., Feng, Y., Zhang, X. and Wang, D. (2018). Synthesis of Hollow Mesoporous TiO2 Microspheres with Single and Double Au Nanoparticle Layers for Enhanced Visible‐Light Photocatalysis. Chemistry–An Asian Journal 13: 432-439.
Rao, G. P., Lu, C. and Su, F. (2007). Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Separation and purification technology 58: 224-231.
Sahraei, R. and Ghaemy, M. (2017). Synthesis of modified gum tragacanth/graphene oxide composite hydrogel for heavy metal ions removal and preparation of silver nanocomposite for antibacterial activity. Carbohydrate polymers 157: 823-833.
Santhosh, C., Velmurugan, V., Jacob, G., Jeong, S. K., Grace, A. N. and Bhatnagar, A. (2016). Role of nanomaterials in water treatment applications: a review. Chemical Engineering Journal 306: 1116-1137.
Santos, T. R. andrade, M. B., Silva, M. F., Bergamasco, R. and Hamoudi, S. (2019). Development of α-and γ-Fe2O3 decorated graphene oxides for glyphosate removal from water. Environmental technology 40: 1118-1137.
Savage, N. and Diallo, M. S. (2005). Nanomaterials and water purification: opportunities and challenges. Journal of Nanoparticle research 7: 331-342.
Shen, J., Huang, W., Li, N. and Ye, M. (2015). Highly efficient degradation of dyes by reduced graphene oxide–ZnCdS supramolecular photocatalyst under visible light. Ceramics International 41: 761-767.
Singh, S. and Batra, R. (2018). Nanotechnology in wastewater treatment: A review. Novel Applications in Polymers and Waste Management: 173-182.
Sinha, V. and Chakma, S. (2019). Advances in the preparation of hydrogel for wastewater treatment: A concise review. Journal of Environmental Chemical Engineering 7: 103295.
Sitko, R., Turek, E., Zawisza, B., Malicka, E., Talik, E., Heimann, J., Gagor, A., Feist, B. and Wrzalik, R. (2013a). Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton transactions 42: 5682-5689.
Sitko, R., Zawisza, B. and Malicka, E. (2013b). Graphene as a new sorbent in analytical chemistry. TrAC Trends in Analytical Chemistry 51: 33-43.
Stafiej, A. and Pyrzynska, K. (2008). Solid phase extraction of metal ions using carbon nanotubes. Microchemical Journal 89: 29-33.
Sudha, D. and Sivakumar, P. (2015). Review on the photocatalytic activity of various composite catalysts. Chemical Engineering and Processing: Process Intensification 97: 112-133.
Sun, W., Shah, S., Chen, Y., Tan, Z., Gao, H., Habib, T., Radovic, M. and Green, M. (2017). Electrochemical etching of Ti2AlC to Ti2CT x (MXene) in low-concentration hydrochloric acid solution. Journal of Materials Chemistry A 5: 21663-21668.
Szuplewska, A., Kulpińska, D., Dybko, A., Chudy, M., Jastrzębska, A. M., Olszyna, A. and Brzózka, Z. (2020). Future applications of MXenes in biotechnology, nanomedicine, and sensors. Trends in biotechnology 38: 264-279.
Tang, C.-Y., Yu, P., Tang, L.-S., Wang, Q.-Y., Bao, R.-Y., Liu, Z.-Y., Yang, M.-B. and Yang, W. (2018). Tannic acid functionalized graphene hydrogel for organic dye adsorption. Ecotoxicology and Environmental Safety 165: 299-306.
Wan, J., Tao, T., Zhang, Y., Liang, X., Zhou, A. and Zhu, C. (2016). Phosphate adsorption on novel hydrogel beads with interpenetrating network (IPN) structure in aqueous solutions: kinetics, isotherms and regeneration. RSC advances 6: 23233-23241.
Wang, F. (2017). Effect of oxygen-containing functional groups on the adsorption of cationic dye by magnetic graphene nanosheets. Chemical Engineering Research and Design 128: 155-161.
Wang, L., Shi, C., Pan, L., Zhang, X. and Zou, J.-J. (2020a). Rational design, synthesis, adsorption principles and applications of metal oxide adsorbents: A review. Nanoscale 12: 4790-4815.
Wang, P., Wang, F., Jiang, H., Zhang, Y., Zhao, M., Xiong, R. and Ma, J. (2020b). Strong improvement of nanofiltration performance on micropollutant removal and reduction of membrane fouling by hydrolyzed-aluminum nanoparticles. Water research 175: 115649.
Wang, S., Ng, C. W., Wang, W., Li, Q. and Hao, Z. (2012). Synergistic and competitive adsorption of organic dyes on multiwalled carbon nanotubes. Chemical engineering journal 197, 34-40.
Wang, X., Lu, J. and Xing, B. (2008). Sorption of organic contaminants by carbon nanotubes: influence of adsorbed organic matter. Environmental science & technology 42: 3207-3212.
Wang, Y., Liang, S., Chen, B., Guo, F., Yu, S. and Tang, Y. (2013). Synergistic removal of Pb (II), Cd (II) and humic acid by Fe3O4@ mesoporous silica-graphene oxide composites. PloS one 8: e65634.
Xie, G., Xi, P., Liu, H., Chen, F., Huang, L., Shi, Y., Hou, F., Zeng, Z., Shao, C. and Wang, J. (2012). A facile chemical method to produce superparamagnetic graphene oxide–Fe3O4 hybrid composite and its application in the removal of dyes from aqueous solution. Journal of Materials Chemistry 22: 1033-1039.
Xu, P., Zeng, G. M., Huang, D. L., Feng, C. L., Hu, S., Zhao, M. H., Lai, C., Wei, Z., Huang, C. and Xie, G. X. (2012). Use of iron oxide nanomaterials in wastewater treatment: a review. Science of the Total Environment 424: 1-10.
Xu, Y., Shan, Y., Cong, H., Shen, Y. and Yu, B. (2018). Advanced carbon-based nanoplatforms combining drug delivery and thermal therapy for cancer treatment. Current pharmaceutical design 24: 4060-4076.
Yang, F., Zhang, S., Sun, Y., Cheng, K., Li, J. and Tsang, D. C. (2018). Fabrication and characterization of hydrophilic corn stalk biochar-supported nanoscale zero-valent iron composites for efficient metal removal. Bioresource technology 265: 490-497.
Yang, G., Li, X., Wang, Y., Li, Q., Yan, Z., Cui, L., Sun, S., Qu, Y. and Wang, H. (2019). Three-dimensional interconnected network few-layered MoS2/N, S co-doped graphene as anodes for enhanced reversible lithium and sodium storage. Electrochimica Acta 293: 47-59.
Yang, K. and Xing, B. (2007). Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water. Environmental Pollution 145: 529-537.
Yang, Q., Chen, G., Zhang, J. and Li, H. (2015). Adsorption of sulfamethazine by multi-walled carbon nanotubes: effects of aqueous solution chemistry. RSC advances 5: 25541-25549.
Yang, S.-T., Chang, Y., Wang, H., Liu, G., Chen, S., Wang, Y., Liu, Y. and Cao, A. (2010). Folding/aggregation of graphene oxide and its application in Cu2+ removal. Journal of colloid and interface science 351: 122-127.
Yu, C., Li, G., Kumar, S., Yang, K. and Jin, R. (2014). Phase transformation synthesis of novel Ag2O/Ag2CO3 heterostructures with high visible light efficiency in photocatalytic degradation of pollutants. Advanced materials 26: 892-898.
Yu, F., Ma, J. and Bi, D. (2015). Enhanced adsorptive removal of selected pharmaceutical antibiotics from aqueous solution by activated graphene. Environmental Science and Pollution Research 22: 4715-4724.
Yu, F., Wu, Y., Li, X. and Ma, J. (2012). Kinetic and thermodynamic studies of toluene, ethylbenzene, and m-xylene adsorption from aqueous solutions onto KOH-activated multiwalled carbon nanotubes. Journal of agricultural and food chemistry 60: 12245-12253.
Yu, Y., Shu, Y. and Ye, L. (2018). In situ crosslinking of poly (vinyl alcohol)/graphene oxide-glutamic acid nano-composite hydrogel as microbial carrier: Intercalation structure and its wastewater treatment performance. Chemical Engineering Journal 336: 306-314.
Yuan, G. (2004). Natural and modified nanomaterials as sorbents of environmental contaminants. Journal of Environmental Science and Health, Part A 39: 2661-2670.
Zhang, L., Song, X., Liu, X., Yang, L., Pan, F. and Lv, J. (2011). Studies on the removal of tetracycline by multi-walled carbon nanotubes. Chemical engineering journal 178: 26-33.
Zhang, L., Zeng, Y. and Cheng, Z. (2016). Removal of heavy metal ions using chitosan and modified chitosan: A review. Journal of Molecular Liquids 214: 175-191.
Zhang, Y., Ni, S., Wang, X., Zhang, W., Lagerquist, L., Qin, M., Willför, S., Xu, C. and Fatehi, P. (2019). Ultrafast adsorption of heavy metal ions onto functionalized lignin-based hybrid magnetic nanoparticles. Chemical Engineering Journal 372: 82-91.
Zhang, Y., Yan, L., Xu, W., Guo, X., Cui, L., Gao, L., Wei, Q. and Du, B. (2014). Adsorption of Pb (II) and Hg (II) from aqueous solution using magnetic CoFe2O4-reduced graphene oxide. Journal of Molecular Liquids 191: 177-182.
Zhao, D., Zhang, W., Chen, C. and Wang, X. (2013). Adsorption of methyl orange dye onto multiwalled carbon nanotubes. Procedia Environmental Sciences 18: 890-895.
Zhao, G., Li, J., Ren, X., Chen, C. and Wang, X. (2011a). Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environmental science & technology 45: 10454-10462.
Zhao, L., Xue, F., Yu, B., Xie, J., Zhang, X., Wu, R., Wang, R., Hu, Z., Yang, S.-T. and Luo, J. (2015). TiO2–graphene sponge for the removal of tetracycline. Journal of Nanoparticle Research 17, 1-9.
Zhao, X., Lv, L., Pan, B., Zhang, W., Zhang, S. and Zhang, Q. (2011b). Polymer-supported nanocomposites for environmental application: A review. Chemical engineering journal 170: 381-394.
Zhu, H., Jiang, R., Xiao, L. and Zeng, G. (2010). Preparation, characterization, adsorption kinetics and thermodynamics of novel magnetic chitosan enwrapping nanosized γ-Fe2O3 and multi-walled carbon nanotubes with enhanced adsorption properties for methyl orange. Bioresource technology 101: 5063-5069.