Alkurdi, S. S., Al-Juboori, R. A., Bundschuh, J. and Hamawand, I. (2019). Bone char as a green sorbent for removing health threatening fluoride from drinking water. Environ. Int., 127; 704-719.
Alkurdi, S. S., Al-Juboori, R. A., Bundschuh, J., Bowtell, L. and McKnight, S. (2020). Effect of pyrolysis conditions on bone char characterization and its ability for arsenic and fluoride removal. Environ. Pollut., 262; 114221.
Božić, D., Gorgievski, M., Stanković, V., Štrbac, N., Šerbula, S. and Petrović, N. (2013). Adsorption of heavy metal ions by beech sawdust–Kinetics, mechanism and equilibrium of the process. Ecol. Eng., 58; 202-206.
Corami, A., Mignardi, S. and Ferrini, V. (2008). Cadmium removal from single-and multi-metal (Cd+ Pb+ Zn+ Cu) solutions by sorption on hydroxyapatite. J. Colloid Interface Sci., 317(2); 402-408.
Mesquita, P. D. L., Cruz, M. A. P., Souza, C. R., Santos, N. T. G., Nucci, E. R. and Rocha, S. D. F. (2017). Removal of refractory organics from saline concentrate produced by electrodialysis in petroleum industry using bone char. Adsorption, 23(7); 983-997.
Coltre, D. S. D. C., Cionek, C. A., Meneguin, J. G., Maeda, C. H., Braga, M. U. C., de Araújo, A. C. and Arroyo, P. A. (2020). Study of dye desorption mechanism of bone char utilizing different regenerating agents. SN Appl. Sci., 2(12); 1-14.
Figueiredo, M. J. D. F. M. D., Fernando, A., Martins, G., Freitas, J., Judas, F. and Figueiredo, H. (2010). Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone. Ceram. Int., 36(8); 2383-2393.
Garg, U. K., Kaur, M. P., Garg, V. K. and Sud, D. (2008). Removal of nickel (II) from aqueous solution by adsorption on agricultural waste biomass using a response surface methodological approach. Bioresour. Technol., 99(5); 1325-1331.
Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A. and Catalano, A. (2020). The effects of cadmium toxicity. Int. J. Environ. Res. Public, 17(11); 3782.
Ghanizadeh, G. and Asgari, G. (2011). Adsorption kinetics and isotherm of methylene blue and its removal from aqueous solution using bone charcoal. React. Kinet. Mech. Catal., 102(1); 127-142.
Ghomri, F., Lahsini, A., Laajeb, A. and Addaou, A. (2013). The removal of heavy metal ions (copper, zinc, nickel and cobalt) by natural bentonite. Larhyss J., 12; 37-54.
Hassan, S. S., Awwad, N. S. and Aboterika, A. H. (2008). Removal of mercury (II) from wastewater using camel bone charcoal. J. Hazard. Mater., 154(1-3); 992-997.
Hosseini, S. S. S., Khosravi, A., Tavakoli, H., Esmhosseini, M. and Khezri, S. (2016). Natural zeolite for nickel ions removal from aqueous solutions: Optimization and modeling using response surface methodology based on central composite design. Desalin. Water Treat., 57(36); 16898-16906.
Ida, S. and Eva, T. (2021). Removal of heavy metals during primary treatment of municipal wastewater and possibilities of enhanced removal: A review. Water, 13(8); 1121.
Jia, P., Tan, H., Liu, K. and Gao, W. (2018). Synthesis, characterization and photocatalytic property of novel ZnO/bone char composite. Mater. Res. Bull., 102; 45-50.
Maeda, C. H., Araki, C. A., Moretti, A. L., de Barros, M. A. S. D. and Arroyo, P. A. (2019). Adsorption and desorption cycles of reactive blue BF-5G dye in a bone char fixed-bed column. Environ. Sci. Pollut. Res., 26(28); 28500-28509.
Mendoza-Castillo, D. I., Bonilla-Petriciolet, A. and Jáuregui-Rincón, J. (2015). On the importance of surface chemistry and composition of bone char for the sorption of heavy metals from aqueous solution. Desalin. Water Treat., 54(6); 1651-1662.
Pan, X., Wang, J. and Zhang, D. (2009). Sorption of cobalt to bone char: Kinetics, competitive sorption and mechanism. Desalin., 249(2); 609-614.
Saffari, M. (2018). Response surface methodological approach for optimizing the removal of cadmium from aqueous solutions using pistachio residues biochar supported/non-supported by nanoscalezero-valent iron. Main Group Met. Chem., 41(5-6); 167-181.
Shahid, M. K., Kim, J. Y. and Choi, Y. G. (2019). Synthesis of bone char from cattle bones and its application for fluoride removal from the contaminated water. Groundw. Sustain. Dev., 8; 324-331.
Shahid, M. K., Kim, J. Y., Shin, G. and Choi, Y. (2020). Effect of pyrolysis conditions on characteristics and fluoride adsorptive performance of bone char derived from bone residue. J. Water Process. Eng., 37; 101499.
Wang, M., Liu, Y., Yao, Y., Han, L. and Liu, X. (2020). Comparative evaluation of bone chars derived from bovine parts: Physicochemical properties and copper sorption behavior. Sci. Total Environ., 700; 134470.
Xu, H., Yang, L., Wang, P., Liu, Y. and Peng, M. (2008). Kinetic research on the sorption of aqueous lead by synthetic carbonate hydroxyapatite. J. Environ. Manage., 86(1); 319-328.
Xu, L., Zhang, J., Ding, J., Liu, T., Shi, G., Li, X., ... and Guo, R. (2020). Pore structure and fractal characteristics of different shale lithofacies in the dalong formation in the western area of the lower yangtze platform. Minerals, 10(1); 72.
Younesi, M., Javadpour, S. and Bahrololoom, M. E. (2011). Effect of heat treatment temperature on chemical compositions of extracted hydroxyapatite from bovine bone ash. J. Mater. Eng. Perform, 20(8); 1484-1490.