Al-Ghouti, M. A., Al-Kaabi, M. A., Ashfaq, M. Y. and Da’na, D. A. (2019). Produced water characteristics, treatment and reuse: A review. J. Water. Pros. Eng., 28; 222–239.
Al-Kaabi, M. A., Al-Ghouti, M. A., Ashfaq, M. Y. M., Ahmed, T. and Zouari, N. (2019). An integrated approach for produced water treatment using microemulsions activated carbon. J. Water. Pros. Eng., 31; 100830.
Amakiria, K. T., Canon, A. R., Marco, M. and Dimakisa, A. A. (2022). Review of oilfield produced water treatment technologies. Chemosphere, 298; 134064
Annan, E., Agyei-Tuffour, B., Bensah, Y. D., Konadu, D. S., Yaya, A., Onwona-Agyeman, B. and Nyankson, E. (2018). Application of clay ceramics and nanotechnology in water treatment: A review. Cogent Eng, 5(1); 1–35.
Bezerra, B. G. P., Parodia, A., Da Silva, D. R. and Pergher, S. B. C. (2019). Cleaning produced water: A study of cation and anion removal using different adsorbents. J. Env. Chem. Eng., 7(2); 103006
Chaukura, N., Chiworeso, R., Gwenzi, W., Motsa, M. M., Munzeiwa, W., Moyo, W., Chikurunhe, I. and Nkambule, T. T. I. (2020). A new generation low-cost biochar-clay composite ‘biscuit’ ceramic filter for point-of-use water treatment. Appl. Clay Sci., 185; 105409.
Chiranjeevi, T., Pragya, R., Gupta, S., Gokak, D. T. and Bhargava, S. (2016). Minimization of Waste Spent Catalyst in Refineries. Procedia Environ. Sci., 35; 610–617.
Dehmani, Y., Alrashdi, A. A., Lgaz, H., Lamhasni, T., Abouarnadasse, S. and Chung, I. M. (2020). Removal of phenol from aqueous solution by adsorption onto hematite (α-Fe2O3): Mechanism exploration from both experimental and theoretical studies. Arabian J. Chem., 13(5); 5474–5486.
Dickhout, J. M., Moreno, J., Biesheuvel, P. M., Boels, L., Lammertink, R. G. H. and de Vos, W. M. (2017). Produced water treatment by membranes: A review from a colloidal perspective. J. Colloid Interface Sci., 487; 523–534.
Dudek, M., Vik, E. A., Aanesen, S. V. and Øye, G. (2020). Colloid chemistry and experimental techniques for understanding fundamental behaviour of produced water in oil and gas production. Adv. Colloid Interface Sci., 276; 102105.
Fakhru’l-Razi, A., Pendashteh, A., Abdullah, L. C., Biak, D. R. A., Madaeni, S. S. and Abidin, Z. Z. (2009). Review of technologies for oil and gas produced water treatment. J. Hazard. Mater., 170(2–3); 530–551.
Gregory, K. B., Vidic, R. D. and Dzombak, D. A. (2011). Water management challenges associated with the production of shale gas by hydraulic fracturing. Elements, 7(3); 181–186.
Hailemariam, R. H., Woo, Y. C., Damtie, M. M., Kim, B. C., Park, K. D. and Choi, J. S. (2020). Reverse osmosis membrane fabrication and modification technologies and future trends: A review. Adv. Colloid Interface Sci., 276; 102100.
Hamad, H. T. (2021). Removal of phenol and inorganic metals from wastewater using activated ceramic. J. King Saud Univ. Eng. Sci., 33(4); 221–226.
Hendges, L. T., Costa, T. C., Temochko, B., Gómez González, S. Y., Mazur, L. P., Marinho, B. A., da Silva, A., Weschenfelder, S. E., de Souza, A. A. U. and de Souza, S. M. A. G. U. (2021). Adsorption and desorption of water-soluble naphthenic acid in simulated offshore oilfield produced water. Process Saf. Environ. Prot., 145; 262–272.
Jang, E., Jeong, S. and Chung, E. (2017). Application of three different water treatment technologies to shale gas produced water. Geosystem Engineering, 20(2); 104–110.
Johnston, J., Lou, J. and Tilton, N. (2022). Application of projection methods to simulating mass transport in reverse osmosis systems. Comput. Fluids, 232; 105189.
Kamoun, N., Hajjeji, W., Abid, R., Rodriguez, M. A. and Jamoussi, F. (2020). Elaboration and properties of low-cost ceramic microfiltration membrane from local Tunisian clay for wastewater treatment. Ceramica, 66(380); 386–393.
Lin, L., Jiang, W., Chen, L., Xu, P. and Wang, H. (2020). Treatment of produced water with photocatalysis: Recent advances, affecting factors and future research prospects. Catalysts, 10(8); 924.
Lu, G., Lu, X. and Liu, P. (2020). Reactivation of spent FCC catalyst by mixed acid leaching for efficient catalytic cracking. J. Ind. Eng. Chem. 92; 236–242.
Mubiayi, M. P., Muleja, A.M. and Mamba, B.B. (2021). Data on physicochemical properties of natural clay and natural clay/multiwalled carbon nanotubes composite materials for various applications possibilities. Data Brief, 39; 107682.
Nasir, S. and Faizal, S. (2016). Ceramic Filters And Their Application For Cadmium Removal From Pulp Industry Effluent. Int. J. Technol., 5; 786–794.
Ngoc Dung, T. T., Phan Thi, L. A., Nam, V. N., Nhan, T. T. and Quang, D. V. (2019). Preparation of silver nanoparticle-containing ceramic filter by in-situ reduction and application for water disinfection. J. Environ. Chem. Eng., 7(3); 103176.
Pertamina. (2017). Capability in Creating Value. 1–148.
Quallal, H. (2019). Kinetic, isotherm and mechanism investigations of the removal of phenols from water by raw and calcined clays. Heliyon, 5(5); e01616.
Reddy, B. S., Maurya, A. K., V E, S., Narayana, P. L., Reddy, M. H., Baazeem, A., Cho, K. K. and Reddy, N. S. (2021). Prediction of batch sorption of barium and strontium from saline water. Environ. Res., 197; 111107.
Uddin, M. K. (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J., 308; 438–462.
Villegas, L. G. C., Mashhadi, N., Chen, M., Mukherjee, D., Taylor, K. E. and Biswas, N. (2016). A Short Review of Techniques for Phenol Removal from Wastewater. Curr. Pollut. Rep., 2(3); 157–167.
Wang, J. and Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnol. Adv., 27(2); 195–226.
Yang, Z., Yan, J. and Wang, F. (2018). Pore structure of kapok fiber. Cellulose, 25(6); 3219–3227.
Ye, Z. and Prigiobbe, V. (2020). Transport of produced water through reactive porous media. Water Research, 185; 116258