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Abstract 
This study derives an analytical solution of a one-dimensional (1-D) Advection-Dispersion Equation 
(ADE) for solute transport with two contaminant sources incorporating the source term. Groundwater 
velocity is considered as a linear function of space while the dispersion as a nth power of velocity and 
analytical solutions are obtained for 1.0n = , 1.5 and 2.0 . The solution is derived using the Generalized 
Integral Transform Technique (GITT) with a new regular Sturm-Liouville Problem (SLP). Analytical 
solutions are compared with numerical solutions obtained in MATLAB pedpe solver and are found to 
be in good agreement. The obtained solutions are illustrated for linear combination of exponential input 
distribution and its particular cases. The dispersion coefficient and temporal variation of the source term 
on the solute distribution are demonstrated graphically for the set of input data based on similar data 
available in the literature. As an illustration, model predictions are used to estimate the time histories of 
the radiological doses of uranium at different distances from the sources boundary in order to under-
stand the potential radiological impact on the general public for such problem. 
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INTRODUCTION

The pollution of groundwater has seriously increased over the years as a result of socioeconomic 
development, and interests many Scientists. The groundwater can be contaminated through the 
infiltration leachate process causing a reduction of groundwater flow rate, which results in difficult 
rehabilitation of groundwater. This pollution has a serious impact on human lives, and activities 
as well as productivity. Thus, it is very important to study the solute transport characteristics 
in porous media for human and ecological health. The transport of a solute in porous media is 
governed by the processes of advection and the dispersion.  The mediums through which the 
solute transport occurs are homogeneous or heterogeneous. This characteristic of media as an 
important role to the solute transport trough them (Kumar & Yadav, 2014; Sanskrityayn et al., 
2018; Yadav & Kumar, 2019). The advection-dispersion equation can be solved numerically or 
analytically. Analytical solutions are still pursued by many scientists because they are relatively 
transparent with respect to model inputs and outputs, and they can provide better physical 
insights into the problems (Park & Zhan, 2001).  
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    Many analytical solutions of contaminants transport in subsurface of water considering 
adsorption are present in the literature. Using the Laplace Transform Technique (LTT), van 
Genuchten (1981) obtained analytical solutions for ADE with zero-order production, simultaneous 
adsorption, and first-order decay for chemical transport. van Genuchten & Alves (1982) proposed 
several solutions that quantitatively describe the behaviour of solute in surface/subsurface in finite 
and semi-infinite medium considering adsorption, first-order decay and zero-order production 
in homogeneous medium. Considering the dispersion coefficient as a linear and exponential 
increasing space function, Yates (1992) developed an analytical solution of advection dispersion 
equation in one-dimension. Zoppou & Knight (1997) obtained an analytical solution for the 
space dependent dispersion. Su et al. (2005) developed an analytical solution to ADE with space-
time dependent dispersion coefficient for predicting solute transport in a steady and saturated 
subsurface flow through heterogeneous porous media.  Zhan et al. (2009) obtained an analytical 
solution for 2-D solute transport using first and third type boundary conditions.  Mazarheti et al. 
(2013) derived analytical solution of one-dimensional solute transport with several point sources 
and arbitrary time-dependent emission rate. It analytical solution was valid only for constant-
parameters. Using the LTT, Kumar & Yadav (2014) developed a 1-D analytical solution for 
conservative solute transport in heterogeneous porous media for pulse type input point source. 
Kumar et al. (2019) studied the effect of the source/sink term on the solute. 

   One of the methods commonly used to solve the ADE in finite domain with distance 
dependent coefficients is the GITT. The GITT was applied by Liu et al. (2000) to solve the one-
dimensional ADE in heterogeneous porous media with source/sink term, coupled with either 
linear or nonlinear sorption and decay. The GITT coupled with the LTT were used by Chen 
& Liu, (2011) to solve a 1-D ADE in a finite spatial domain with an arbitrary time-dependent 
inlet boundary condition. For a finite spatial domain, the 1-D ADE considering the sorption 
and desorption of solute, with arbitrary space dependent coefficients was solved analytically 
using the GITT (Skaggs et al., 2007). Pérez Guerrero et al., (2009) presented a new analytical 
method to solve a 3-D ADE in a finite domain with time varying boundary condition for both 
transient and steady-state regimes using change of variables in combination with the Classic 
Integral Transform Technique (CITT). Chen et al. (2011) presented an analytical solution 
of two-dimensional ADE in cylindrical coordinates using a combination of the second kind 
finite transform method and the GITT. Recently, Bharati et al. (2017); Bharati et al. (2018) and 
Bharati et al. (2019) presented an analytical solution of solute transport with distance depending 
coefficients without source term, using the GITT with a new regular SLP with a self-adjoin 
operator to derive analytical solutions in a finite domain. Although these studies proposed 
novel methods to solve the ADE, they did not incorporate several parameters on the solute 
transport such as the source term and the presence of several pollutant sources. Including many 
parameters in pollutant transport equation is helpful to cover many aspects of contaminant 
transport in groundwater in more natural way (Chaudhary et al., 2020).

The aim of this study is to investigate analytically for the 1-D ADE in heterogeneous domain, 
with space and time dependent production term and two inputs localized at the boundaries 
of the domain. The analytical solution is obtained using the GITT with associate advection-
dispersion SLP using a self-adjoin operator. The analytical solution is validated with the help of 
the numerical solution. To our knowledge, no such results have established previously for this 
type of problem. The main focus of this study was to investigate the effect of the two points input 
sources, the additional source term and the degree of heterogeneity on contaminant distribution. 
The experimental results for this type of problem are not available in the literature for verification. 
However, this study is likely to present a real scenario of groundwater contamination. The 
developed analytical model is applied to illustrate the time variation of uranium radioactivity 
concentration and the potential radiological impact through the time histories of the radiological 
doses at different distances from the origin.
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 MATERIALS AND METHODS

In this study, we consider one-dimensional solute transport in a horizontal aquifer. The one-
dimensional ADE in general form, describing a non-conservative solute transport in a finite 
porous media domain with spatially dependent dispersion coefficient, 2 1( )[ ]D x L T − , Darcy 
velocity 1( )[ ]u x LT − , and zero-order production may be written as Chaudhary et al. (2020):

 ( ) ( )                           (    , )b
l s b

C S Cf D x u x C C S q x t
t t x x

ρθ µ µ ρ
η

∂ ∂ ∂ ∂ + = − − − + ∂ ∂ ∂ ∂  ᵞ( , )q x t  (1) 

where ( , )C x t  is the solute concentration in the liquid phase 3[ ]ML− at a position [ ]x L  of the 
medium at a time [ ]t T , ( , )S x t is the solid phase concentration 3[ ]ML− , representing the sorbed 
solute per unit mass of solid, θ  is the volumetric water content, f  represents the fraction of 
sorption site, bρ is the bulk density of porous media 3[ ]ML− , η  is the porosity of the porous 
media, lµ  and sµ  are the first order decay rate of the liquid an solid phases concentration 
respectively , ᵞ( , )q x t  stands for  an arbitrary space and time variable  zero-order production. 
The left-hand side of Eq. (1) represents change in solute concentration in liquid and solid 
phases with time respectively for the first and second terms. The right-hand side of the Eq. (1) 
represents the influence of the dispersion on the solute concentration distribution by the first 
term and the change of the solute concentration due to advective solute transport by the second 
term.  The third and the fourth terms of the right-hand represent the first-order decay of solute 
in the liquid and solid phases in the medium respectively. The fifth term represents the zero-
order production ᵞ( , )q x t  ( ( , ) 0)q x t > or sink ᵞ( , )q x t  ( ( , ) 0)q x t <  for solute which represents internal/external 
production or sink of the solute in the medium. 

Furthermore, we assumed that the expression for a linear equilibrium between the solute 
substances in the solid–liquid phase is given by Sim & Chrysikopoulos (1996) and Singh & Das 
(2015) :

dS Fk C=                                                                                                                                                      (2)   
                                                         
where F  represents the mass fraction of sorption particles where sorption is instantaneous, 

dK   refers to the distribution coefficient 3 1[ ]L M − . For an instantaneous sorption in all the mass 
F = 1. 

In this study, the groundwater velocity is assumed to be governed by the Darcy equation. Due 
to the steady recharge, groundwater velocity will be increasing linearly with position (Serrano, 
1992). Hence both the dispersion coefficient and velocity are considered spatially dependant in 
general form. In this study, the expression of groundwater velocity and dispersion coefficient are 
considered to follow the dispersion theory according to which the dispersion is proportional to 
the nth-power of the space velocity ( nD uα ) (Freeze & Cherry,  1979), where n  is considered 
as 1.0 , 1.5 , and 2.0 . Thus, the expression of velocity and hydrodynamic dispersion coefficients 
are considered as follows:

0 1 2( , ) ( )u x t u a a x= +   and  ( )*
0 1 2( , ) ( )nD x t D D a a xτ= + +                                                                           (3)

whereτ  is the tortuosity, 2 1
0[ ]D L T − , * 2 1[ ]D L T − and 1

0[ ]u LT −  are respectively constant 
mechanical dispersion coefficient, molecular diffusion coefficient and velocity in a steady flow 
domain through a homogeneous porous medium. 1a  is a non-dimensional parameter and 

1
2[ ]a L−   represents the heterogeneity parameter. 

In this study, the source/sink is expressed by single function on space and time-dependent as 
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that proposed by Kumar et al. (2019):

0( , ) ( ) ( )x t p x q tγ γ=                                                                                                                                  (4) 

where 0γ  is the uniform zero-first order production coefficient 3 1[ ]ML T− − .  
By substituting Eqs. (2), (3), and (4) into Eq. (1) we get:

0 1 2 0 1 2 0( ) ( ) ( ) ( )  x
C CnR D a a x u a a x C q p x q tx xt

µ 
 
 

∂ ∂ ∂= + − + − +∂ ∂∂
                                                                  (5)

where ( )b dR f Fkθ ρ η= +  is the retardation factor and l s b dFkµ µ µ ρ= + .  
   Before pollutant sources are injected in the medium, it is supposed to contain a background 

contamination. This contamination can be expressed as a linear combination of some input 
contaminant concentration in liquid and solid phases respectively (Chaudhary et al., 2020). In 
this study, it is assumed that previous concentration in the liquid phase is an arbitrary space 
variable function, while the input concentration in the solid phase is uniform with distance.  The 
initial condition may be written in general form as follows. 

( , ) ( ) ; , 0, 0i
sC x t h x K x t= + ≥ =                                                                                                               (6) 

where ( )h x  is the input liquid phase concentration and i
sK  the input solid phase concentration.   

The geological formation of the medium through which the dispersion occurs is considered 
to be bounded by two parallel planes, e.g. the planes at 0x = , x l= with two pollutant sources 
located at the two planes so that the pollutant enters through the planes (see Fig. (1)). 

As the groundwater flows from 0x =  to x l= , this situation could be referred to advection-
dispersion with simultaneous input in the flow direction and against the direction of the flow. In 
this study, the surface concentrations variables are considered and may be expressed in general 
form as: 

1( , ) ( ), 0, 0C x t f t x t= = >                                                                                                                  (7)

2( , ) ( ), , 0C x t f t x l t= = >                                                                                                                  (8)  

where 1( )f t  and 2 ( )f t are the amount of pollutant concentration entering through the 
planes 0x = and x l= respectively.  The initial and the boundary conditions Eqs. (6)-(8) are 
similar to the situation of the diffusion into a plane sheet of material  with surfaces, 0x = , x l=
, maintained at constant concentrations 1C  and 2C  respectively, having a general initial heat 
distribution studied by Cranck (1975). 

 

                                     Fig 1.  Graphical representation of the problem 
   

Fig. 1.  Graphical representation of the problem
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Generally, the analytical solution of the ADE defined in Eqs. (5)-(8) is obtained using the 
GITT.    To apply the GITT, it is necessary to homogenize the boundary conditions as the 
solutions of non-homogeneous problems based on eigen-function expansions may converge 
slowly or even exhibit anomalous behaviour, especially in the vicinity of the boundaries (Ozisik, 
1980; Almeida & Cotta, 1995; Cotta & Mikhailov, 1997; Liu et al., 2000). The following new 
independent variable is defined:

[ ]1 2 1( , ) ( ) ( ) ( ) ( , )xC x t f t f t f t Q x t
l

= + − +                                                                                                   (9)    
                                                                             

where ( , )Q x t  is the solution of the following problem:

( )

[ ] [ ]{ }
0 0

0

2

0 1 2 2 1 2 0 2 0 02

12 1
0 1 2 2 1 2 0 2 1 2 1

1 2 1

1

)

( ) ( ) ( ) ( )1 2

( ) ( )
( ) ( ) ( ( ) ( ) ( )

( ) ( ) ( )

n

n
x x

x

Q Q QnR D a a x u a a x na D a a x u a Q q p x
t x x

f t f t x
u a a x na D a a x u a f t f t f t

l l

df t df t df t x
R

dt dt dt l

µ

µ−

−∂ ∂ ∂
= + − + − + − + +

∂ ∂ ∂

−
− + − + − + + −

− + −

 
 

  

  
    

                      
 (10)

( , )Q x t  have the same forms of boundary conditions as Eqs. (7) and (8) but with the right 
side now set equal to zero for both equations.

  The initial condition of ( , )Q x t  becomes

[ ]1 2 1( , ) ( ) (0) (0) (0) ; 0, 0i
s

xQ x t h x K f f f x t
l

= + − − − ≥ =    (11) 

When solving problem using the GITT, a pair of transforms, namely an integral transform 
and an inverse transform, has to be established (Almeida & Cotta, 1995; Cotta, 1993; Liu et 
al., 1998; Suk, 2013). The auxiliary problem must be chosen such that constructing the pair 
of transforms be simplified and that the solution converges for much lesser number of terms. 
Bharati et al. (2017) and Pérez Guerrero et al. (2009) proposed to use an eigenvalue problem of 
SLP with self-adjoin second order operator.  The regular SLP chosen for this study is the same 
as that proposed by (Bharati et al., 2017; Bharati et al., 2018; Bharati et al., 2019) which has the 
particularity of making concentration converge for the first five number of summation. The 
selected ODE of the SLP is written as:

(1 ) 0xxd de edx dx
ϕ β ϕ 

 
 

+ + =                                                                           (12)       
                                             

with the following associated two homogeneous first type boundary conditions:

( 0) 0xϕ = =                                                                                                                                              (13)   
                                                                                                                               

( ) 0x lϕ = =                                                                                                                                             (14)  
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The trivial solution of this problem is 0ϕ = . The nontrivial solutions are called the 

eigenfunctions belonging to each eigen values mβ , and may be expressed as (Bharati et al., 2017):

( ) ( )( ) exp 2 sin 3 4 / 2x x l xm mϕ β = − +                                                                                             (15)      

                                                                                        
where the eigen values mβ  are given by 

2 2

2

3
4

m
m l

πβ = −
 
and 1,2,3,4....m =

The orthogonality property for the set of linearly independent eigen functions ( )xmϕ  reference 
to the weight function ( ) xx eρ = , associated with Eq. (12) is given by:

0

/ ( ) ( )
l

m k mk m
x le x x dx Nϕ ϕ δ=∫                                                  (16)   
  

where mN  is the norm and mkδ is the Kronecker delta. The norm and the normalized eigen 
functions ( )m xψ  are respectively given by:

/

0
( ) ( )

2

l
x l

m mm
lN e x x dxϕ ϕ= =∫                      (17)   

( )( ) m
m

m

xx
N

ϕψ =                                                                                           (18)

Now, the unknown function ( , )Q x t  is represented as a series expansion in terms of the 
normalized eigen functions ( )xmψ  as:

1
( , ) ( ) ( )

M

m m
m

Q x t x T tψ
→∞

=
= ∑       (Inverse)                                                                                                    (19)

where ( )mT t  is the transformed “potential”.  Eq. (19) is the inverse transform rule. The 
corresponding transform rule is obtained by following the procedure of Cotta (1993) and Ozisik 
(1993) i.e. applying the operator 

0
( ) ( )( )

l

mx x dxρ ψ •∫ to both sides of Eq. (10) and using Eq. (19) (the 
orthogonality property) and Eq. (20) to obtain

0
( ) ( ) ( ) ( , )

l

m mT t x x Q x t dxρ ψ= ∫     (Transform)                                                                                          (20)    
         

Substituting this solution in the ADE in Eq. (10), multiplying by ( )x
me xψ , integrating over 

the given domain, and using the orthogonality properties in Eq. (17), the result is a system of 
first order ordinary differential equations, a system of IVP, in matrix form, as:

d t t t
dt
m

m m
T ( )A + BT ( ) = G ( )                                                                                                                        (21)       

                                                                                                 
with the transform initial condition
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[ ]1 2 1
0

/20 2 ( ) (0) (0) (0) e sin   
l

i
s

x xx lh x K f f f m dx
l l

π= + − − −∫
   
   
   

T ( )m                       (22)

where elements of the M × M matrices A and B and the M-length vectors G are given by:

,
0

2 sin sin
l

m k
x xA R m k dx

l l l
π π   = ∫    

   
                                                                                                      (23)  

0

0

2 2

, 1 2 2 2 2
0

1
0 1 2 2 1 2

0

0 2

2 1
( ) sin cos sin

4

2 1
( ) ( ) cos sin sin

2

2
( ) sin

l
n

m k x

l
n

x

m x m x x
B D a a x m m k dx

l l l l l l l

m x x x
u a a x na D a a x m m k dx

l l l l l l

x
u a m

l

π π
π π π

π
π π π

µ π

−

= + − +∫

+ + − + −∫

+ +

       
             

                      

0
sin

l x
k dx

l l
π∫

   
   
   

          
 (24)

   { 0

2 1
0 1 2 2 1 2 0 2 1 2 1

0

1 2 1 2

( ( ) ( ))2 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( ))

( ) ( ) ( )
sin e

l

x
l

f t f t xnG t q t p x u a a x na D a a x u a f t f t f txm l l l

df t df t df t x m
R x dx

dt dt dt l l

µ

π

− −= − + − + − + + −∫

− + −

       

    
       

 
                                                                                                                                                          (25)

 The Fourier coefficients in Eq. (21) are given by:           

                                                                                                                                    
( ) ( ) ( )

0

( ) exp 0 exp exp ( )
t

t t t dτ τ τ+ × ∫-1 -1 -1 -1
m mT = -A B T ( ) -A B A B A G                    (26) 

The expression of the Fourier coefficients in Eq. (26) is a particular form of that in Eq. (17) 
of Liu et al. (2000). 

   Analytical solutions are obtained in Euclidean and fractal framework i.e for 1n = ,  1.5 and 
2 , representing an index of the spatial dependence of the dispersion coefficient in the dispersion 
theory nD uα  as proposed by Freeze & Cherry (1979). As Bharati et al. (2017), Bharati et al. 
(2018) and Bharati et al. (2019), we found that our analytical solution converges to the designer 
pattern with the first five terms ( 5N = ) of the Fourier series. Thus, the solution in Fourier series 
with first five terms may be written as:

[ ]1 2 1 1 2 3

4 5

( , ) ( ) ( ) ( ) 2 exp( / 2) ( ) sin ( ) sin 2 ( ) sin 3

( ) sin 4 ( ) sin 5

x x x x
C x t f t f t f t x T t T t T t

l l l l

x x
T t T t

l l

π π π

π π

= + − + − + +

+ +

      
           

   
      

     
 (27)   
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RESULTS AND DISCUSSION
Verification of the solution

The solute concentration pattern due to two continuous point sources is obtained from the 
proposed analytical solutions in groundwater finite flow domain and finite temporal domain as 
mentioned in the previous section.  For short special domain, Chaudhary et al. (2020) proposed 
to use exp( sec( ))xλ−  as distribution of background concentration in the liquid phase because, 
its decreasing rate is much slower than exponential and could well represent slow movement of 
groundwater.

The accuracy of the analytical solutions is evaluated using the following solute transport 
problem

0 1 2 0 1 2 0( ) ( ) ( ) ( )x
C CnR D a a x u a a x C p x q tx xt

µ γ 
 
 

∂ ∂ ∂= + − + − +∂ ∂∂
                                                    (28)    

( , ) exp[ sec( )] ; , 0, 0i
i sC x t C x K x tλ= − + ≥ =                                                                      (29) 

 
                                                                              

1 1( , ) exp( ), 0, 0C x t C t x tλ= − = >                                                                                                      (30)

                                                                                                                    
2 1( , ) exp( ), , 0C x t C t x l tλ= − = >                                                                                                     (31) 

                                                                                     
where 3[ ]iC ML−  is the uniform input liquid phase concentration, [ ]C ML−  and 3

2[ ]C ML−  
are the uniform sources concentration at the origin and end of the domain respectively, and

1
1[ ]Tλ −  is the flow resistance coefficient.    

We considered a finite spatial and temporal domain defined as 0 ( ) 1x m≤ ≤  and 0 ( ) 7t year≤ ≤
. The solute concentration strength is evaluated from the analytical solutions given in Eq. (27) 
and the five time-dependent Fourier coefficients are given by Eq. (20). If the solute distribution 
coefficient dK  is negligible (i.e. 0dK ≈ ), there is no interaction between the solute and soil, 
and the retardation factor R becomes equal to water content θ , which is less than 1. So, the 
retardation factor R becomes less than 1 for the case mentioned above. This indicates that only 
a fraction of liquid phase concentration participates in the transport mechanism. The input 
parameters values used are given by Singh & Kumari (2014) 1 1.0 /C mg L= , 0.01 /iC mg L=
, 0.01 /i

sK mg L= , 0 0.01 /u m year= , 2
0 0.01 /D m year= , 1 1a = , * 20.002 /D m year=

, 0.8f = , 0.01dK = , 10.01s year−= , 10.0027l yearµ −= , 10.13s yearµ −= , 1
2 0.8a m−= , 

0 0.02 /mg L yearγ = . The uniform input concentration in the end of the domain is set to be 
2 0.5 /C mg L= . The space variation function of the source term is also considered as 13a m−=

. Three geological formations are considered here with  average porosity η  and bulk density bρ  
as follows (Manger, 1963; Freeze & Cherry, 1979) : 0.3η =  (sandstone), 0.1  (shale), 0.5  (gravel) 
; 2.49bρ = (sandstone), 2.39  (shale), 2.68  (gravel). 

   Figures (2), (3) and (4)  plot the curves showing the solute concentration distribution in 
the reservoir for the three types of geological formations at 1t = , 2 , 4  and 6  years for 1n =
, 1.5n =  and 2n =  respectively. The solid lines represent the curves of analytical solutions and 
the circles symbol, those of numerical solutions. It is found that for each value of n and both 
geological formations, at 1t year= in this example, the solute profile is qualitatively similar 
to that predicted with standard advection-dispersion models. After a certain time, the solute 
concentration increases with traveling distance from approximative value of 1.0 /mg L  at 

0x m=  to a maximum value of concentration, then decreases back to 0.5 /mg L  at the end of 
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Fig 2. Comparison of analytical and numerical solutions for contaminant transport with two 
input sources at four different times for n = 1 obtained for different geological formations. 

Fig. 2. Comparison of analytical and numerical solutions for contaminant transport with two input sources at 
four different times for n = 1 obtained for different geological formations.

 
Fig 3. Comparison of analytical and numerical solutions for contaminant transport with two 

input  
sources at four different times for n = 1.5 obtained for different geological formations. 

 

Fig. 3. Comparison of analytical and numerical solutions for contaminant transport with two input sources at 
four different times for n = 1.5 obtained for different geological formations.
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the domain.  This build-up of concentration is due to the concentration effect of the additional 
source term in the reservoir that decreases with distance. The solute build-up depends on the 
geological formation and on the value of n, for a fixed time. For example, a comparison of 
Figs. 2(a)-4(c) show that the peak of concentration decreases with the increasing value of n 
in both geological sites. The distance concerned by the solute build-up is very important and 
increases with increasing time, also, the maximum of concentration value gradually increases 
with increasing time. The solute build-up in a large distance is due to the presence of two 
contaminant sources, each acting separately at the boundary of the reservoir.

The analytical solutions in each case are also compared with the respective numerical solutions 
obtained using MATLAB pdepe solver. The results show that in each geological formation, both 
solutions are in good agreement in both forms of dispersity, as illustrated by the curves and the 
value of Root Mean Square Error (RMSE).   Hence, the higher values of RMSE are observed for 

1.5n = .  It can be concluded that analytical solutions converge well with five terms of summation.  
   Pollutant concentrations in both geological formations are compared for each value of n in 

Figure 5. The curves are plotted at 2t years= and 4t years= with the same input as in Figs. 
(2)-(4). Figure 5 depicts that for 1n =  and 1.5 , the concentration level is higher in gravel with 
bulk density ( 2.68bρ = )  compared to sandstone ( 2.49bρ = ) and shale ( 2.39bρ = ) at each of 
the position and time. While for 2n =  at the fixed time 2t years= , the concentration values 
of gravel formation are higher at each of the position for this domain i.e., 0 0.2x m≤ ≤ but from 
0.2 m to the end of the domain, the concentration values are higher for the sandstone formation. 
At this time, the shale geological formation has the lower values of pollutant concentration in 
all the domain. At fixed time 4t years= , the pollutant concentration values are higher in 

 
Fig 4. Comparison of analytical and numerical solutions for contaminant transport with two 
input sources at four different times for n = 2 obtained for different geological formations. 

   

Fig. 4. Comparison of analytical and numerical solutions for contaminant transport with two input sources at 
four different times for n = 2 obtained for different geological formations.
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gravel in comparison to sandstone for 0 0.35x m≤ ≤ and than shale formation for this domain 
0 0.55x m≤ ≤ . At this time, the concentration values in sandstone are higher than those of 
shale formation at each of the position of the domain. We also note that when n increases, the 
difference on pollutant concentration levels in both formation decreases. 

Illustration of the model
In the last decades, human activities and industrial development of industrialization these 

last decades have increased considerably the number of pollution sources in the environment, 
particularly in the groundwater. Some contaminants wastes are evacuated by septic tanks, 
other substances as petroleum are transported via pipes. These sources can be cause multiple 
contaminations of a medium in different positions. Although literature contains many studies 
referring to multiples contaminants input sources, few of them considered the effect of a 
variety of boundary inputs (e.g. Mazarheti, 2013). But no one has considered the input sources 
localized at the origin and end of the domain. The analytical solutions obtained in this study 
are illustrated for contaminant transport with source-production decay which have many real 
world hydrological applications and are large importance in soil contamination. This is the 
case of sequential decay of multi-species contaminants as nitrogen, chlorinated solvent, and 
radionuclide. 

Figure  6 illustrates the pollutant distribution  at 1t = , 3 , 5 , 10  and 50  years in heterogeneous 
medium for 1.5n = . Contaminant concentration pattern is investigated for sandstone geological 
formation ( 0.3η = , 2.49bρ = ). Five pollutant input distributions with production-decay are used 
to illustrate the effect of input source to the solute concentration pattern. The first one considers 

 

Fig 5. Comparison of solute concentration at different times for different geological formations 
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the linear combination of exponential inlet distribution ( 1,2 1,2 1,2( ) (1 e ) ep st tf t C Cλ λ− −= − + ), 
where 1[ ]p Tλ −  and 1[ ]s Tλ −  represent the production and decay constant respectively. For this 
input distribution, it is possible to obtain well known input distributions for particulars values 
of the production/decay constants. 

 

Fig 6. Solute distribution pattern in sandstone formation for different input distributions for n = 

1.5 

The input parameters values used, and the other distribution function are the same as in Figure (3). 

Additionally, the following values are taken for decay and production constants 10.025p year 

, 10.002s year   and the kinetic rate 1.25K  .   

Fig. 6. Solute distribution pattern in sandstone formation for different input distributions for n = 1.5
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● Case 1: For 0pλ =  and sλ → ∞ we have 1,2 1,2( )f t C=

● Case 2 : For pλ → ∞ , we obtain 1,2 1,2 1,2( ) e stf t C C λ−= +

● Case 3 : For 0pλ → , we obtain  1,2 1,2( ) (1 e )ptf t C λ−= −

The last input distribution investigated consider a consecutive reaction at the source given 
by  1,2 1,2( ) (e e )ps ttf t C K λλ −−= − , where K  represents the global kinetic rate. This solution can be 
particularly useful for waste radioactive decay at the source or PCE (tetrachloroethylene) to 
TCE (trichloroethylene) degradation in soils (Moranda, 2018).

The input parameters values used, and the other distribution function are the same as in 
Figure (3). Additionally, the following values are taken for decay and production constants 

10.025p yearλ −= , 10.002s yearλ −=  and the kinetic rate 1.25K = .  
It is clearly observed that, at 1t year= for this example, the pollutant concentration strength 

exhibits different patterns for the various inputs boundary distribution. But after certain a 
period, the pollutant concentration starts with a value imposed by the input at the first end of 
the reservoir i.e., 0x =  and concentration increased with one additional source function in 
the aquifer. The maximum value of pollutant concentration moved from the additional source 
function; after the contaminant concentration decreased with distance to the concentration 
value at the end of the domain given by the input distribution at this position. However, the 
higher pollutant concentration values are observed for the input distribution ( ) e stf t C C λ−= +
and the lower values for ( ) (1 e )ptf t C λ−= − . The figure clearly demonstrate that the pollutant 
concentration strength is significantly affected by the input boundary distributions. 

Figures 7.a and 7.b show the concentration breakthrough curves for 1.5n =  at 0.35x m=
and 0.8x m=  respectively for the different input distributions. The input parameters remain 
the same as in Figure (3).  It is observed that at these positions, the concentration in both 
distributions increases sharply from zero value at t = 0 up to a maximum value reached between 
5 and 10 years , and it starts decreasing gradually with time. The increasing and the decreasing 
rates depend on the pollutant input distribution. For example, we can observe that the increasing 
and decreasing rates are higher for ( ) e stf t C C λ−= +  in comparison with other distributions. 
For ( ) (1 e )ptf t C λ−= − , the pollutant concentration increases slowly compared to the other 
distributions, and the decreasing rate is very low.  However, the higher concentration values are 
observed at 0.35x m= . These curves again clearly illustrate that the concentration strength is 
significantly affected by the form of the input distribution. 

 

Fig 7. Breakthrough curves obtained in sandstone formation for n = 1.5 for different input 
distributions. 

   

Fig. 7. Breakthrough curves obtained in sandstone formation for n = 1.5 for different input distributions.
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The pollutant concentration profile is depicted for four different dispersion profiles ( 0 0.05D =
, 0.02 , 0.01  and 0.005  2 /m year ) with fixed velocity and particular time 50t years=  as 
shown in the Fig.8.  Figs. 8(a), 8(b) and 8(c) demonstrate this strength for 1n = , 1.5  and 2  
respectively. 

The linear combination of exponential inlet distribution is considered with input parameters 
remaining the same as in Figs. 2, 3 and 4 respectively. The curves show that, for both values of 
dispersion coefficient, the pollutant concentration was approximated as 1.65 /mg L  at the inlet 
location of the reservoir and concentration increased to a maximum value depending on the 
value of n  because of additional source function. After, the pollutant concentration decreases 
when distance increases until reaching a fixed concentration value at the end of the reservoir. 
The peak concentration in each case is large because of the presence of the two contamination 
sources. The increasing rate is higher for lower values of dispersion coefficient in comparison 
with higher values of dispersion coefficient while, the decreasing rate is lower for higher values 
of dispersion coefficient in comparison to lower values of dispersion. For a fixed value of n, the 
concentration values at each of the intermediate position increases with the decreasing value 
of the dispersion coefficient. Increasing the dispersion coefficient will decrease the maximum 
value of solute concentration. Overall, the peak pollutant concentration for various profiles in 
the front is large, moved from one additional source function and decreases towards the exit 
boundary. Also, the concentration values at intermediate positions depend on the dispersion 
coefficient as well as on the value of n. It is clear that the dispersion process plays an important 
role for the determination of the concentration distribution in the presence of two input sources.    

Figure 9 elucidates the effect of time dependence of production term on the concentration 
pattern in the medium with square root dispersivity ( 1.5n = ) in sandstone geological formation 

 

Fig 8.  Effect of dispersion coefficient on solute concentration distribution in presence of two 
sources localized at x = 0 and x = 1 km. 

   

Fig. 8.  Effect of dispersion coefficient on solute concentration distribution in presence of two sources localized at 
x = 0 and x = 1 km.
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for a fixed time 5t =  years. Four expressions of time decreasing functions for the production 
term are used to illustrate this effect; the exponential decreasing function ( ( ) exp( )q t st= − ), a 
sinusoidal function ( ( ) 1 sin( )q t st= − ), an hyperbolic function (

1( )
1 sinh( )

q t
st

=
+ ) and 1( )

1
q t

st
=

+
. 

The solute concentration profiles are obtained with the same parameters values as in Fig. (3.a). 
For all the profiles, the concentration starts with a constant value at the origin of the domain, 
increases with distance to a maximum value, then decreases to a minimum value at the end of 
the domain.  The pollutant concentration values at the boundary of the domain depend only 
on the expression of the time dependent function. The figure depicts that the concentration 
level at different positions is attenuated with the increasing value of the parameter S in both the 
expressions of time dependent source term except for the sinusoidal function. For this function, 
the concentration level decreases with the increasing value of s  until a certain value and then 
begins to increase with the increasing value of s . This result can be attributed to the periodical 
behavior of the sinusoidal function, causing the concentration level to depend to the frequency  
s of the sinusoidal function.  The curves depicts also that the variation of the parameter s  
produces an important variation on pollutant concentration level in the case of sinusoidal and 
exponential decaying functions in comparison with the other. 

Example of application
Many contaminant sources are present in the environment and some of them are subject 

of studies due to their importance or the damage they can cause to living organisms. These 
contaminant sources are of various nature and origin, among which the radionuclides. Several 

 

Fig 9. Effect of source term and unsteady parameter on contaminant concentration 
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radionuclides are members of a radionuclide decay chain.  A lot of researchers have developed 
various models involving sets of advective-dispersive transport equations coupled by first-
order decay (van Genuchten, 1985; Suk, 2013; Chen et al., 2019; Yu et al., 2019) but analytical 
solutions in closed form that consider both production and decay at the source are scarcely 
available (Paladino et al., 2018; Moranda et al., 2018; Sanskrityayn & Kumar, 2017).  To illustrate 
the model, the following example of application has been considered: a transport of a second 
member of radionuclide decay chain during its movement into groundwater with two sources

 238 234 230Pu U Th→ →

In the chosen example, the radionuclide source undergoes at the same time a decay and a 
production so that the boundary functions in Eqs. (7) and (8) are written as

1 1( ) (e e )ps ttf t C K λλ −−= −                                                                                                                               (32)         

                                                                                      
2 2( ) (e e )ps ttf t C K λλ −−= −                                                                                                                            (33)      

                                                                                                     
 where sλ  and Pλ  are respectively the decay and production constant 1[ ]T − , K  is the kinetic 
rate. 

When studying the distribution of radionuclides in a medium, we are most often interested 
in their environmental impact, especially in the effective dose that human beings can absorb. 
Based on the studied model, one can determine the radionuclide absorbing dose from ingestion 
of drinking water.

The committed effective dose per person from a given radionuclide through groundwater 
can be calculated by:

   IR C DFCommitted effective dose = × ×                                                                                                 (34)           
                                                                            
where IR  is the rate of intake ( 3 /m day ), C  is the radioactivity concentration in groundwater 

of the nuclide ( 3/Bq m ), and DF  is the ingestion dose coefficient of the nuclide for the adult age 
group ( /Sv Bq ).  

Input parameters, used here, are kept from (Carntrell et al., 2003; ICRP, 2012; Chen et al., 
2019; Chaudhary et al., 2020) except for input concentration value and, they are summarized in 
Table 1.

Figure 10.a depicts the radionuclide concentration as a function of time at different distances 
from the origin ( 50x = , 100x =  and  200x m= ) for different geological formations. The 
concentration of 234U  at each of the position increases in the early time period and starts 
decaying after a certain year depending on the geological formation and the position. However, 
the concentration of 234U maintains the increasing trends up to10,000 years . The gravel 
formation has the higher radioactive concentration than the two others geological formations. 
The highest value of concentration is observed for 200x m=  at 1,000t years= with the value 
of 9 32.1 10 /Bq m× .  It could be seen that the radioactivity concentration level decreases with 
position and then increases due to the second radioactive source localized at the end of the 
domain. 

Figure 10.b depicts the time history of radionuclide dose at different distances from the origin 
( 50x = , 100x =  and  200x m= ) for different geological formations. A comparison of Figs. 
10.a with 10.b shows that the amplitude of the doses at different positions and for each geological 
formation follows the same sequence of the magnitude of the corresponding concentration. As 
the radioactive concentration, the higher dose values are obtained for gravel formation for an 
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adult located at 200x m= from the origin. At that location, the highest value of the amplitude 
of the dose is about 0.021 /Sv year .

The smallest value of the dose is obtained for the shale formation at 100 m  of the origin.  
However, for both geological formations and at both positions, the annual doses are all above 
the WHO guideline of 0.1 mSv/year for the drinking water pathway. The generalized analytical 
solutions can quickly and accurately predict the one-dimensional solute (as radionuclide) 
migration and assess the radiological impact posed by radionuclides in the environment as a 
result of leakages from a nuclear waste repository or accidental discharge from a nuclear facility.

Table 1. Input parameters for uranium 

Parameters Units Values 

Water content,      3 3/m m 0.4  
Distribution coefficient,  dK   3 /m kg  0.2  

Porosity,     - 
Sandstone,   0.3  

Shale,  0.1  
Gravel,  0.5  

Bulk density,  b   3/Kg m  
Sandstone,  2490  

Shale,  2680  
Gravel,  2390  

Effective dispersion coefficient, 0D   2 /m year  1000  
Groundwater velocity, 0u   /m year  100  
Radioactive decay constant,    1year  0.0000028  
Production constant,   p   1year  0.0089  

Source decay constant,  s  1year  0.0010028  
Initial amount of radionuclide,  1C   2/Bq m  1510  
Initial amount of radionuclide,  2C   2/Bq m  145 10  

Rate of intake, IR   3 /m day  0.005  
Ingestion dose coefficient,  DF   /Sv Bq  84.9 10  

 

Table 1. Input parameters for uranium

 

Fig 10. (a) Time history radionuclide at different distances from the origin ; (b) Effective dose of 
radionuclide acquired through drinking groundwater pathway at different distances from the 

origin 
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COCLUSION

An analytical solution of 1-D ADE solute transport with distance dependent coefficients in 
a sorbing finite groundwater reservoir with an additional source-sink term was derived. The 
transport problem considered an hypothetical two continuous pollutant sources localized at 
the origin and at end of the domain. The velocity was considered as a linear function of space 
function while the dispersion coefficient was considered as a nth power of the velocity. Analytical 
solution is dirived via the GITT using an advection-dispersion SLP with a new self-adjoint 
operator. The effect of some parameters on the equation was investigated with the help of graphs. 
The results show that for such situations, the concentration increases in the direction of flow, 
reaching a peak of concentration, then decreases with distance because of the additional source 
function which decreases with position. The peak concentration is large due to the presence 
of two pollutant input sources at the boundary of the reservoir. The concentration levels in 
the reservoir depend on the geological formation and the degree of heterogeneity (value of n), 
with the highest value obtained for 1n = . Overall, by varying the input boundary conditions, 
the values of n, the dispersion coefficient, the value of uniform source term and the geological 
formation a set of concentration profile can be generated.   The accuracy of the calculated 
analytical contaminant strength is analysed with their corresponding numerical results obtained 
by MATLAB pdepe Solver, which were found in acceptable compliance with each other for both 
values of n.  The obtained analytical solution could be useful for estimating the transport of 
contaminant in heterogeneous and homogeneous, sorbing groundwater reservoir with two 
sources of contaminations. Furthermore, it can be recommended as a tool for assessing human 
risk by drinking water as illustrated by the example of application studied.  In the future, we 
intent to address the problem for the case of unsteady parameters but also to extend the study 
to the case of several contaminants sources through arbitrary time-dependent emission rate 
patterns. 
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