Biological Treatment of Textile Wastewater by Total Aerobic Mixed Bacteria and Comparison with Chemical Fenton Process

Document Type : Original Research Paper

Authors

1 Department of Environmental Science and Technology, Jashore University of Science and Technology, P. O. Box 7408, Jashore, Bangladesh.

2 Graduate School of Environmental Science, Hokkaido University, P. O. Box 060-0810, Sapporo, Japan.

3 Department of Environmental Science and Disaster Management Noakhali Science and Technology University, P. O. Box 3814, Noakhali, Bangladesh.

4 Department of Mathematics, Jashore University of Science and Technology, P. O. Box 7408, Jashore, Bangladesh.

5 Water Research Center, Department of Environmental Sciences, Jahangirnagar University, P. O. Box 1342, Dhaka, Bangladesh.

Abstract

Textile effluents are highly colored for synthetic dyes, cause significant water pollution due to high pH, TDS, EC, BOD, and COD content, and are harmful to aquatic species. Among different treatment processes, biological treatment process is considered as a promising approach. In this investigation, a mixed aerobic bacterial consortium was used for the treatment of wastewater. In addition, the fenton process with a normal sand filter was used for treatment and compared with the biological method. The mean values of BOD, COD, TDS, EC, DO, and pH in the raw wastewater indicated that the effluent was highly contaminated according to Bangladesh standard (ECR, 1997). Both the biological treatment process and fenton process separately showed promising removal of pollution load. The aerobic mixed bacterial consortium reduced TDS (66.67%), EC (60%), BOD (91.67%), and COD (85.45%) and fenton process reduced TDS (74.71%), EC (55.11%), BOD (88.33%), and COD (83.63%) compared to the raw effluent bacterial consortium simultaneously degraded dyes and decolorized the wastewater from dark deep green to transparent. Color removal for the mixed aerobic bacterial process after 72 hours of aeration was 58.57% and for the fenton process with a normal sand filter was 80%. BOD and COD removal percentages for aerobic mixed bacterial consortium showed higher removal efficiency than the fenton process with a normal sand filter. Though 92 hours of aeration showed the maximum satisfactory result, aeration time could be reduced to 72 hours which also satisfied the Bangladeshi standard (ECR, 1997).

Keywords


Alalewi, A. and Cuiling, J. (2012). Bacterial influence on textile wastewater decolorization. J. Environ. Prot. 3, 889.
Adedayo, O., Javadpour, S., Taylor, C., Anderson, W. A. and Moo-Young, M. (2004). Decolourization and detoxification of methyl red by aerobic bacteria from a wastewater treatment plant. W. J. Microbiol. Biotechnol., 20(6), 545-550.
Akar, T., Ozcan, A. S., Tunali, S. and Ozcan, A. (2008). Biosorption of a textile dye (Acid Blue 40) by cone biomass of Thuja orientalis: estimation of equilibrium, thermodynamic and kinetic parameters. Bioresourc. Technol., 99(8), 3057-3065.
Allen, M. E. (2005). MacConkey agar plates protocols. American Soci. Microbio., 30, 1-4.
Ali, I. (2010). The quest for active carbon adsorbent substitutes: inexpensive adsorbents for toxic metal ions removal from wastewater. Separat. and Purifica. Review., 39(3-4), 95-171. 
Anastasi, A., Spina, F., Romagnolo, A., Tigini, V., Prigione, V. and Varese, G. C. (2012). Integrated fungal biomass and activated sludge treatment for textile wastewaters bioremediation. Bioresour. Technol., 123, 106-111.
Babu, S. S., Mohandass, C., Vijayaraj, A. S. and Dhale, M. A. (2015). Detoxification and color removal of Congo Red by a novel Dietzia sp. (DTS26)–a microcosm approach. Ecotox.  Environ. Safe., 114, 52-60.
Badawi, A. K. and Zaher, K. (2021). Hybrid treatment system for real textile wastewater remediation based on coagulation/flocculation, adsorption and filtration processes: Performance and economic evaluation. J. Water Process. Eng. 40, 101963.
Bae, W., Won, H., Hwang, B., de Toledo, R. A., Chung, J., Kwon, K. and Shim, H. (2015). Characterization of refractory matters in dyeing wastewater during a full-scale Fenton process following pure oxygen activated sludge treatment. J. Hazard. Mater., 287, 421-428. 
Banat, I. M., Nigam, P., Singh, D. and Marchant, R. (1996). Microbial decolorization of textile-dye-containing effluents: a review. Bioresour. Technol. 58:217-227
Bhad, R. M., Das, A., and Kodape, S. M. (2022). Ozonation of Procion Blue Reactive Dye and it’s Kinetics Study. Pollution, 8(2), 529-541.
Berkessa, Y. W., Yan, B., Li, T., Jegatheesan, V.and Zhang, Y. (2020). Treatment of anthraquinone dye textile wastewater using anaerobic dynamic membrane bioreactor: Performance and microbial dynamics. Chemosphere, 238, 124539.
Blanco, J., Torrades, F., De la Varga, M., and García-Montaño, J. (2012). Fenton and biological-Fenton coupled processes for textile wastewater treatment and reuse. Desalination, 286, 394-399.
Blanco, J., Torrades, F., Morón, M., Brouta-Agnésa, M. and García-Montaño, J. (2014). Photo-Fenton and sequencing batch reactor coupled to photo-Fenton processes for textile wastewater reclamation: feasibility of reuse in dyeing processes. Chem. Eng. J. 240, 469-475.
Buthiyappan, A., Gopalan, J. and Raman, A. A. (2019). Synthesis of iron oxides impregnated green adsorbent from sugarcane bagasse: Characterization and evaluation of adsorption efficiency. Journal of environmental management., 249:109323.
Carrillo, P. G., Mardaraz, C., Pitta-Alvarez, S. I. and Giulietti, A. M. (1996). Isolation and selection of biosurfactant- producing bacteria. J. Microbiol. Biotechnol., 12(1), 82-84.
Castro, M., Nogueira, V., Lopes, I., Vieira, M. N., Rocha-Santos, T. and Pereira, R. (2018). Treatment of a textile effluent by adsorption with cork granules and titanium dioxide nanomaterial. J. Environ. Sci. Health C, 53(6), 524-536
Chen, X., Shen, Z., Zhu, X., Fan, Y. and Wang, W. (2005). Advanced treatment of textile wastewater for reuse using electrochemical oxidation and membrane filtration. Water S.A., 31(1), 127-132.
Dotto, J., Fagundes-Klen, M. R., Veit, M. T., Palacio, S. M. and Bergamasco, R. (2019). Performance of different coagulants in the coagulation/flocculation process of textile wastewater. Journal of Cleaner Production, 208, 656-665.
Elazhary, M. A. S. Y., Saheb, S. A., Roy, R. S. and Lagacé, A. (1973). A simple procedure for the preliminary identification of aerobic gram-negative intestinal bacteria with special reference to the Enterobacteriaceae. Can. J. Comp. Med, 37(1), 43.
Environmental Conservation Rules (ECR), Department of Environment. Ministry of Environment and Forest. People’s Republic of Bangladesh; 1997.
Fongsatitkul, P., Elefsiniotis, P., Yamasmit, A. and Yamasmit, N. (2004). Use of sequencing batch reactors and Fenton’s reagent to treat a wastewater from a textile industry. Biochem. Eng. J., 21(3), 213-220.
Glazer, A.N. (1997). Microbial Biotechnology WH freeman and Company New York. 54—58.
Gregersen, T. (1978). Rapid method for distinction of Gram-negative from Gram-positive bacteria. European journal of applied microbiology and biotechnology, 5(2), 123-127.
Holkar, C. R., Jadhav, A. J., Pinjari, D. V., Mahamuni, N. M. and Pandit, A. B. (2016). A critical review on textile wastewater treatments: possible approaches. J. Environ. Manage., 182, 351-366.
Hossain, M. S., Sarker, P., Rahaman, M. S. and Uddin, M. K. (2020). Integrated Performance of Fenton Process and Filtration (Activated Charcoal and Sand) for Textile Wastewater Treatment. Curr. J. Appl. Sci. Technol., 21-31.
Hu T. L. and Wu, S. C. (2001). Assessment of the effect of azo dye RP2B on the growth of a nitrogen fixing cyanobacterium Anabaena sp. Biores Technol 77:93–95.
Ishak, W. W., Jamek, S., Jalanni, N. A., and Jamaludin, N. M. (2011). Isolation and Identification of Bacteria from Activated Sludge and Compostfor Municipal Solid Waste Treatment System. Int. Proc. Chem. Biol. Environ. Eng., 24, 450-454.
Jadhav, J. P., Kalyani, D. C., Telke, A. A., Phugare, S. S. and Govindwar, S. P. (2010). Evaluation of the efficacy of a bacterial consortium for the removal of color, reduction of heavy metals, and toxicity from textile dye effluent. Bioresourc. Technol., 101(1), 165-173.
Kang, S. F., Liao, C. H., and Chen, M. C. (2002). Pre-oxidation and coagulation of textile wastewater by the Fenton process. Chemosphere, 46(6), 923-928.
Khehra, M. S., Saini, H. S., Sharma, D. K., Chadha, B. S., and Chimni, S. S. (2005). Decolorization of various azo dyes by bacterial consortium. Dyes pigm., 67(1), 55-61.
Krieg, N. R. and J. G. Holt. (1984). Bergey’s manual of systematic bacteriology. Vol. 1. The Williams and Wilkins Co., Baltimore.
Lalnunhlimi, S. and Krishnaswamy, V. (2016). Decolorization of azo dyes (Direct Blue 151 and Direct Red 31) by moderately alkaliphilic bacterial consortium. Brazilia. J. Microbiol., 47(1), 39-46.
Leal, T. W., Lourenco, L. A., Scheibe, A. S., De Souza, S. M. G. U., and De Souza, A. A. U. (2018). Textile wastewater treatment using low-cost adsorbent aiming the water reuse in dyeing process. Journal of Environmental Chemical Engineering, 6(2), 2705-2712
Lotito, A.M., Fratino, U., Bergna, G. andDi Iaconi, C., 2012. Integrated biological and ozone treatment of printing textile wastewater. Chem. Eng. J. 195-196, 261-269.
Lotito, A. M., De Sanctis, M., Di Iaconi, C. and Bergna, G. (2014). Textile wastewater treatment: Aerobic granular sludge vs activated sludge systems. Water Res., 54, 337-346.
Lotter, L. H. and Murphy, M. (1985). The identification of heterotrophic bacteria in an activated sludge plant with particular reference to polyphosphate accumulation. Water SA, 11(4), 179-184.
Malik, A., Hussain, M., Uddin, F., Raza, W., Hussain, S., Habiba, U. E. and Ajmal, Z. (2021). Investigation of textile dyeing effluent using activated sludge system to assess the removal efficiency.  Water Environ. Res, 93(12), 2931-2940.
Masalvad, S. K. S., and Sakare, P. K. (2021). Application of photo Fenton process for treatment of textile Congo-red dye solution. Mater. Today: Proc.: Proceedings, 46, 5291-5297.
Matira, E. M., Chen, T. C., Lu, M. C., and Dalida, M. L. P. (2015). Degradation of dimethyl sulfoxide through fluidized-bed Fenton process. J. Hazard. Mater., 300, 218-226.
Mazumder, D. (2011). Process evaluation and treatability study of wastewater in a textile dyeing industry. Int. J. Ener. Environ., 2(6). 
McKinney, R. E., and Weichlein, R. G. (1953). Isolation of floc-producing bacteria from activated sludge. J. Appl. Microbiol, 1(5), 259-261.
Meek, D. W., Hoang, C. K., Malone, R. W., Kanwar, R. S., Fox, G. A., Guzman, J. A., and Shipitalo, M. J. (2012). Rational polynomial functions for modeling E. coli and bromide breakthrough. Transac. of ASABE, 55(5), 1821-1826.
Meerbergen, K., Willems, K. A., Dewil, R., Van Impe, J., Appels, L., and Lievens, B. (2018). Isolation and screening of bacterial isolates from wastewater treatment plants to decolorize azo dyes. J. Biosci. Bioeng., 125(4), 448-456.
Meerbergen, K., Van Geel, M., Waud, M., Willems, K. A., Dewil, R., Van Impe, J. and Lievens, B. (2017). Assessing the composition of microbial communities in textile wastewater treatment plants in comparison with municipal wastewater treatment plants. MicrobiologyOpen, 6(1), e00413.
Mirbagheri, S. A., Ebrahimi, M. and Mohammadi, M. (2014). Optimization method for the treatment of Tehran petroleum refinery wastewater using activated sludge contact stabilization process. Desalination Water Treat, 52(1-3), 156-163.
Mirbolooki, H., Amirnezhad, R. and Pendashteh, A. R. (2017). Treatment of high saline textile wastewater by activated sludge microorganisms. J. Appl. Res. Technol. 15(2), 167-172.
Nawaz, M. S. and Ahsan, M. (2014). Comparison of physico-chemical, advanced oxidation and biological techniques for the textile wastewater treatment. Alex. Eng. J., 53(3), 717-722.
Nguyen, T. A., Fu, C. C., and Juang, R. S. (2016). Biosorption and biodegradation of a sulfur dye in high strength dyeing wastewater by Acidithiobacillus thiooxidans. J. Environ. Manage., 182, 265-271.
Pala, A., and Tokat, E. (2002). Color removal from cotton textile industry wastewater in an activated sludge system with various additives. Water Res., 36(11), 2920-2925.
Patil, A. D. and Raut, P. D. (2014). Treatment of textile wastewater by Fenton’s process as an Advanced Oxidation Process. J. Environ. Sci.Toxicol. and Food Technol., 8, 29-32.
Paul, S.A., Chavan, S.K. and Khambe, S.D., (2012.) Studies on characterization of textile industrial wastewater in solapur city. Int. J. Chem. Sci. 10, 635-642.
Perkowski, J., Kos, L., and Ledakowicz, S. (1996). Application of ozone in textile wastewater treatment. Ozone Sci Eng. 18, 73-85
Pike, E. B., Carrington, E. G. and Ashburner, P. A. (1972). An evaluation of procedures for enumerating bacteria in activated sludge. J. Appl. Microbiol., 35(2), 309-321.
Prabakar, J., John, J., Arumugham, I. M., Kumar, R. P. and Srisakthi, D. (2018). Comparative evaluation of retention, cariostatic effect and discoloration of conventional and hydrophilic sealants-A single blinded randomized split mouth clinical trial. Contemp. Clin. Dent., 9(Suppl 2), S233.
Punzi, M., Anbalagan, A., Börner, R. A., Svensson, B. M., Jonstrup, M., & Mattiasson, B. (2015). Degradation of a textile azo dye using biological treatment followed by photo-Fenton oxidation: evaluation of toxicity and microbial community structure. Chem. Eng. J., 270, 290-299.
Ranga,P., Saharan, B.S. and Sharma, D. (2015). Bacterial degradation and decolorization of textile dyes by newly isolated Lysobacter sp. Afr. J. Microbiol. Res. 9(14), 979-987.A
Sghaier, I., Guembri, M., Chouchane, H., Mosbah, A., Ouzari, H. I., Jaouani, A. and Neifar, M. (2019). Recent advances in textile wastewater treatment using microbial consortia. J. Text. Eng. Fash. Technol., 5(3), 134-146.
Shade, A., Peter, H., Allison, S. D., Baho, D., Berga, M., Bürgmann, H. and Handelsman, J. (2012). Fundamentals of microbial community resistance and resilience. Front. microbiol,, 3, 417.
Shaibur MR, Tanzia FKS, Nishi S, Nahar N, Parvin S, Adjadeh TA (2022): Removal of Cr (VI) and Cu (II) from tannery effluent with water hyacinth and arum shoot powders: A study from Jashore, Bangladesh. J Hazard. Mater. Advance. 7(2022). doi: https://doi.org/10.1016/j.hazadv.2022.100102.
Simion, V. A., Cretescu, I., Lutic, D., Luca, C., and Poulios, I. (2015). Enhancing the Fenton process by UV light applied in textile wastewater treatment. Environ Eng Manag J, 14(3).
Sneath, P.H. A., N. S. Mair, M. E.Sharpe, and J. G. Holt. 1986. Bergey’s manual of systematic bacteriology. Vol. 2. The Williams & Wilkins Co., Baltimore.
Snaidr, J., Amann, R., Huber, I., Ludwig, W., and Schleifer, K. H. (1997). Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl. Environ. Microbiol., 63(7), 2884-2896.
Sozen, S., Olmez-Hanci, T., Hooshmand, M., and Orhon, D. (2020). Fenton oxidation for effective removal of color and organic matter from denim cotton wastewater without biological treatment. Environ. Chem. Lett., 18(1), 207-213.
Su, C. C., Pukdee-Asa, M., Ratanatamskul, C., and Lu, M. C. (2011). Effect of operating parameters on the decolorization and oxidation of textile wastewater by the fluidized-bed Fenton process. Sep. Purif. Technol., 83, 100-105.
Suryawan, I., Siregar, M. J., Prajati, G., and Afifah, A. S. (2019). Integrated ozone and anoxic-aerobic activated sludge reactor for endek (Balinese textile) wastewater treatment. Journal of Ecological Engineering, 20(7).
Tasneem, A., Sarker, P., Akter, S., Mouna, S. S. P., Rahaman, M. S., Mohinuzzaman, M., and Kabir, M. M. (2021). Textile wastewater treatment by combination of chemical and phytoremediation processes. Pollution, 7(1), 43-54.
Tüfekci, N., Sivri, N., and Toroz, İ. (2007). Pollutants of textile industry wastewater and assessment of its discharge limits by water quality standards. Turk. J. Fish. Aquat. Sci, 7(2), 97-103.
Wagner, M., Amann, R., Kämpfer, P., Assmus, B., Hartmann, A., Hutzler, P., and Schleifer, K. H. (1994). Identification and in situ detection of gram-negative filamentous bacteria in activated sludge. Syst. Appl. Microbiol., 17(3), 405-417.
Wang, X., Wen, X., Criddle, C., Wells, G., Zhang, J., and Zhao, Y. (2010). Community analysis of ammonia-oxidizing bacteria in activated sludge of eight wastewater treatment systems. J. Environ. Sci., 22(4), 627-634.
Wang, Y., Wang, H., Wang, X., Xiao, Y., Zhou, Y., Su, X., and Sun, F. (2020). Resuscitation, isolation and immobilization of bacterial species for efficient textile wastewater treatment: a critical review and update. Sci. Total Environ., 730, 139034. 
Watari, T., Hata, Y., Hirakata, Y., Nguyet, P. N., Nguyen, T. H., Maki, S. and Yamaguch, T. (2021). Performance evaluation of down-flow hanging sponge reactor for direct treatment of actual textile wastewater; Effect of effluent recirculation to performance and microbial community. J. Water Process. Eng., 39, 101724.
Yang, X., Xue, Y., and Wang, W. (2009). Mechanism, kinetics and application studies on enhanced activated sludge by interior microelectrolysis.  Bioresour. Technol, 100(2), 649-653.
Yang, H. Y., Jia, R. B., Chen, B., and Li, L. (2014). Degradation of recalcitrant aliphatic and aromatic hydrocarbons by a dioxin-degrader Rhodococcus sp. strain p52. Environ. Sci. Pollu. Res., 21(18), 11086-11093. 
Yang, Q., Wang, J., Han, X., Xu, Y., Liu, D., Hao, H. and Qi, S. (2014). Analysis of the bacterial community in a full-scale printing and dyeing wastewater treatment system based on T-RFLP and 454 pyrosequencing. Biotechnol. Bioprocess Eng., 19(1), 191-200.