Greening of brick and tile production: an index to evaluate its environmental performance

Document Type : Original Research Paper

Authors

São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences (FCAV), Jaboticabal, CEP 14884-900, São Paulo, Brazil

10.22059/poll.2022.343928.1492

Abstract

This work presents an index to evaluate the environmental performance of brick and tile manufacturing. The steps used were: 1) process study; 2) waste analysis; 3) determination of the potential impact of waste; 4) normalization of the potential impact; 5) comparative weighting among the potentials; 6) creation of the index. The index considers three parameters: the amount of waste produced, the disposal of waste, and the spatial dispersion of waste. The index was called CIRI (Ceramic Industry Rating Index) and was tested in a ceramic company. The field application showed that the waste that offered the highest environmental impact were gases generated from the burning of chips (30.850%), ashes generated from the burning of chips (30.483%), and steel drums (28.937%), which total of 90.27%. The CIRI index was 28.732%, which shows bad waste management. In view of the findings, two points must be considered: 1) the impacts generated by gaseous could be mitigated by companies by using technologies for drying tiles and bricks with a lower level of environmental impact; 2) entrepreneurs should be concerned about the fate given to the ashes because the dispose practiced is not environmentally correct. The index is useful for assessing the environmental impact of the brick and tile industry. It is useful for managers insofar as a proposal for process improvements. The novelty of this study lies in the index developed, which was designed to consider: the potential for environmental impact, the amount of waste, the spatial coverage, and the adequacy of waste disposal.

Keywords


Abnt - Brazilian Association of Technical Standards (2015). Normas da Série ISO 14000. ABNT NBR ISO 14031. Rio de Janeiro: Brasil. 
Abrahão, R. and Carvalho, M. (2017). Environmental Impacts of the Red Ceramics Industry in Northeast Brazil. Int. J. Emerg. Res. Manag. Technol., 6(8), 310-317.
Almeida, M. I., Ana Cláudia, D., Marta, D. and Luís, A. (2016) Environmental profile of ceramic tiles and their potential for improvement. J. Clean. Prod., 131, 583-593.
Almeida, M., Dias, A., Demertzi, M. and Arroja, L. (2015). Contribution to the development of product category rules for ceramic bricks. J. Clean. Prod., 92, 206-215.
Alves, J. O., Junca, E., Espinosa, D. C. R. and Tenório J. A. S. (2015). Resíduo do corte de granito: inovação tecnológica para a destinação final. Tecnol. Metal. Mater. Min., 12(2), 123-128.
Barbieri, J. C. Gestão Ambiental Empresarial: conceitos, modelos e instrumentos (2016). São Paulo: Saraiva.
Burcin, A. T., Şeyma, K. O. and Tuba, B. D. (2021). Improving the sustainability of ceramic tile production in Turkey. Sustain. Prod. Consum., 27, 2193 – 2207.
Burcin, A. T., Tuba, B. D. and Seyma, K. O. (2021a) Environmental impact assessment of ceramic tile manufacturing: a case study in Turkey. Clean Technol. Environ. Policy, 23(4), 1295-1310. 
Capra, F. A teia da vida (1996). São Paulo: Cultrix.
Callister, W. D and Rethwisch, D. G. (2011). Materials Science and Engineering. NY, USA: John Wiley and Sons.
Rosales-Laderos, C., Barrera-Díaz, C. E., Bilyeu, B., Guerrero, V. V. and Núñez, F. U. (2013). A review on Cr(VI) adsorption using inorganic materials. Am. J. Anal. Chem., 4, 8-16.
Coltro, L., Gasparino, B. F. and Queiroz, G. de C. Reciclagem de materiais plásticos: A importância da identificação correta. Polímeros: Ciência e Tecnologia, Campinas, 2008.
Correia, J. V. F. B. and Fraga, Y. S. B. (2019). Propriedades mecânicas de resíduos de cerâmica vermelha como agregado miúdo para a produção de concretos. Cadernos de graduação: ciências exatas e tecnológicas, Aracaju, Brasil. 
Correia, S. L.; Bloot, L. A. and Folgueras, M. V. (2009). Propriedades químicas, mineralógicas e cerâmicas de argilas do norte de Santa Catarina, Brasil; Caracterização físico-química de argilas da região norte de Santa Catarina. Escritório de Informações Científicas e Técnicas do Departamento de Energia dos EUA, Guarujá, Brasil. 
Dias, M.D.C.O., Mauri, C.B.P., Pedro, L F.D. and Jair F.V. (1999). Manual de impactos ambientais: orientações básicas sobre aspectos ambientais atividades produtivas, Banco do Nordeste, Fortaleza.
El-Gamal, S.M.A., El-Hosiny, F.I., Amin, M.S. and Disse, D.G. (2017). Ceramic waste as an efficient material for enhancing the fire resistance and mechanical properties of hardened Portland cement pastes, Constr. Build. Mater., 154, 1062–1078. 
FISPQ - Safety Data Sheet for Chemicals (2015). PRODUTO: Lubrax Grans THF (20W-30) – Composição e informações sobre os ingredientes. Duque de Caxias: RJ.
Granemann, S. R. and Gartner, I. R. (2000). Modelo multicriterial para escolha modal/sub-modal de transporte. Anais da ANPET.
Hariz, S. and Bahmed, L. (2013). Assessment of environmental management system performance in the Algerian companies certified ISO 14001, Manag. Environ. Qual., 24, 228-243.
Hermann, E., Call, J., Hernandez-Lloreda, M. V., Hare, B, and Tomasello, M. (2007). Humans have evolved specialized skills of social cognition: the cultural intelligence hypothesis. Science, 317(5843), 1360–1366.
Huijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F., Stam, G., Verones, F., Vieira, M., Zijp, M., Hollander, A., and Zelm, R. V. (2017). ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess., 22, 138–147.
Hummel, M., Määttänen, M., SärkilahtI, A., Harlin, A. and Sixta, H. (2015). Upcycling of waste paper and cardboard for textiles. Royal Society of Chemistry, Finland.
Ishizaka, A. and Labib, A. (2009). Analytic hierarchy process and expert choice: benefits and limitations. OR Insight, 22(4), 201–220.
ITCG – Instituto de Terras, Cartografia, e Geologia do Paraná. Argila. Retrieved from http://www.mineropar.pr.gov.br/modules/conteudo/conteudo.php?conteudo=29%3E%20Aceso.
Junior, M. C., Tanno, L. C., Sintoni, A., Motta, J. F. M. and Coelho, J. M. (2012). A indústria de cerâmica vermelha e o suprimento mineral no Brasil: Desafios para o aprimoramento da competitividade. Cerâmica Industrial,17(1), 36-42.
Junior, M. C., Azevedo, P. B. M. and Cuchierato, G. (2019). Estudo estratégico da cadeia produtiva da indústria cerâmica no estado de São Paulo: Parte I – Introdução e a Indústria de Cerâmica Vermelha. Cerâmica Industrial, 24(1), 20-34.
Kings certified industrial packaging (2019). Retrieved from http://reisembalagens.com.br/tambor_de_aco_tampa_removivel.html
Leite, M. G. and Gonçalves-Fujaco, M. A. (2013) A atividade de beneficiamento de quartzitos na cidade de Ouro Preto-Brasil: características gerais e principais impactos ambientais, Economia, Sociedad y Território, XIII(41), 227-243.
Li, F., Phoon, K-K., Du, X. and Zhang, M. (2013). Improved AHP method and its application in risk identification. J. Constr. Eng. Manag., 139, 312-320. 10.1061/(ASCE)CO.1943-7862.0000605
Losinox (2019). Differences between stainless steel. Retrieved May 10, 2020, from http://Blog.losinox.com.br/2017/12/14/diferenca-entre-o-aco-inox-430-e-o-304/
Muneron, L. M., Hammad, A. W. A., Najjar, M. K., Haddad, A. and Vazquez, E. G. (2021). Comparison of the environmental performance of ceramic brick and concrete blocks in the vertical seals’ subsystem in residential buildings using life cycle assessment. Cleaner Engineering and Technology, 5, 100243.
Muthukannan, M. and Ganesh, A. S. C. (2019) The Environmental Impact Caused by the Ceramic Industries and Assessment Methodologies. Int. J. Qual. Res., 13(2), 315–334.
Oliveira, T. Y. M. (2015) Estudo sobre o uso de materiais de construção alternativos que otimizam a sustentabilidade em edificações. (Trabalho de conclusão de curso). Universidade Federal do Rio de Janeiro, Escola Politécnica, Rio de Janeiro.
Oliveira, A., Cristobal, S. Y. and Saizar, C. (2016). Análisis de ciclo de vida ambiental, económico y social: una herramienta para la evaluación de impactos y soporte para la toma de decisiones. INNOTEC Gestión, 7, 20-27.
Pereira, L. C. S., Barros, D. S. A., Whitaker, J. S., Rocha, H. V., Rodrigues, E. S. and Moraes, M. I. F. (2015). Trilhas do Rio Tapajós: Perspectivas Socioambientais para a sustentabilidade. Itaituba, Ione Sena. 
Rao, R. V. (2013). Improved multiple attribute decision-making methods. Decision making in manufacturing environment using graph theory and fuzzy multiple attribute decision making methods, 7-39. 
Rebelato, M. G., Rodrigues, A. M., Thomaz, A. G. B., Saran, L. M., Madaleno, L. L. and Oliveira, O. J. (2019). Developing an index to assess human toxicity potential of sugarcane industry. J. Clean. Prod., 209, 1274–1284.
Resende, D. S., Filho, H. R., Keles, J. G., Gouveia, A. M. C., Bezerra, A. C. S. and Aguilar, M. T. P. (2012). Cinzas de cavaco de eucalipto processadas em compósitos cimentícios. In: Anais do 20º CBECIMAT - Congresso Brasileiro de Engenharia e Ciência dos Materiais, Joinville, SC.
Rodrigues, A. M., Rebelato, M. G. and Zeviani, C. H. (2015). Methodological benchmark for environmental performance evaluation in metalworking companies. Bus. Manag. Rev., 7, 285-299.
Saaty, R. W. and Saaty, T. L. (2016) Decision making in complex environments. Including a tutorial for the super decisions software and portions of the encyclical on of applications, 1.
Saaty, T. L. (1990) How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res., 48, 9-26.
Sales, A. T. C. and Alferes Filho, R. dos S. (2014). Efeito do pó de resíduo cerâmico como adição ativa para o concreto, Ambiente Construído, 14(1), 113–125.
Sánchez, L. E. (2008). Avaliação de Impacto Ambiental: conceitos e métodos. São Paulo: SP: Oficina de Textos.
Sangwan, K. S., Choudhary, K. and Batra, C. (2017). Environmental impact assessment of a ceramic tile supply chain – a case study. Int. J. Sustain. Eng., 11(3), 211-216.
SEBRAE - SERVIÇO BRASILEIRO DE APOIO ÀS MICRO E PEQUENAS EMPRESAS. (2005). Ideias de Negócios Sustentáveis: indústria de cerâmica. Brasília: Brasil. 
Sindecer - Sindicato da indústria da cerâmica no Rio Grande do Norte (2015) A História da Cerâmica. Retrived from http://www.sindicermf.com.br/historia-da-ceramica.html
Song, M. L., Fisher, R. W. J. L. and Cui, L. B. (2016). Environmental performance evaluation with big data: theories and methods. Ann. Oper. Res., 270, 459–47.
Steel drum (2019). Retrieved from https://translate.google.com/translate?hl=pt BRandsl=enandu=https://www.steel-plastic-fibre-drums.com/steel-drums/andprev=search>
Thomas, L. (2008) Saaty Decision making with the analytic hierarchy process Int. J. Services Sciences, 1(1), 83-98. 
Toensmeier, E. (2016). The carbon farming solution: a global toolkit of perennial crops and regenerative agriculture practices for climate change mitigation and food security, by Eric Toensmeier. Agroecol. Sustain. Food Syst., 40(9), 1039–1040.
Türkmen, A. C., Januschowski, T., Wang, Y. and Cemgil, A. T. (2021). Forecasting intermittent and sparse time series: A unified probabilistic framework via deep renewal processes. PLoS ONE 16(11): e0259764. https://doi.org/10.1371/journal.pone.0259764
Türkmen, A., Burcin, Özbilen, Şeyma and Budak, T. (2021b). Improving the sustainability of ceramic tile production in Turkey. Sustain. Prod. Consum., 27, 2193 – 2207.
Nayak, V. and D’Souza, R. G. L. Comparison of multi-criteria decision making methods used in requirement engineering. CiiT International Journal of Artificial Intelligent Systems and Machine Learning, 11(5), 92-96.
Westkämper, E., Alting and Arndt. (2000). Life cycle management and assessment: Approaches and visions towards sustainable manufacturing (keynote paper). CIRP Annals - Manufacturing Technology, 49, 501-526.
Zui-Cha, D., Jian-Ning, Y. and Liu, Y. (2017). An Inverse Problem Arisen in the Zero-Coupon 38 Bond Pricing. Nonlinear Analysis: Real World Applications, 11(3), 1278-1288.