Adams. H., Ojeda-Castillo, V., Guzmán-Osorio, F., Álvarez-Coronel, G. and Domínguez-Rodríguez, V.I. (2020). Human health risks from fish consumption following a catastrophic gas oil spill in the Chiquito River, Veracruz, Mexico. Environ. Monitor. Ass., 192, Article 83795 https://doi.org/10.1007/s10661-020-08742-zh
de Andrade Brito, I., Garcia, J.R.E., Salaroli, A.B., Figueira, R.C.L., de Castro Martins, C., Neto, A.C., Gusso-Choueri, P.K., Choueri, R.B., Borges, S., Araujo, L. and de Oliveira Ribeiro, C.A. (2018). Embryo toxicity assay in the fish species Rhamdia quelen (Teleostei, Heptaridae) to assess water quality in the Upper Iguacu basin (Parana, Brazil). Chemosphere, 208, 207–218.
https://doi.org/10. 1016/j.chemosphere.2018.05.009
Beiraoa, J., Baillonc, L., Litt, M.A., Langlois, V. and Purchas, C. (2019). Impact of crude oil and the dispersant Corexit™ EC9500A on capelin (Mallotus villosus) embryo development. Marine Environ. Res., 147, 90–100. https://doi.org/10.1016/j.marenvres.2019.04.004
Bender, M.L., Giebichenstein, V., Teisrud, R.N., Fantzen, M., Meador, J.P., Sørensen, L., Hansen, B.H., Reinardy, H.C., Laurel, B. and Nahrgang, J. (2021). Combined effects of crude oil exposure and harming on eggs and larvae of an arctic forage. Sci. Rep., 11, Article number 8410
https://doi.org/10.1038/s41598-021-87932-2 - 7
Beyer, J., Trannum, H.C., Bakke, T., Hodson, P. and Collier, T. (2016). Environmental effects of the Deepwater Horizon oil spill: A review. Mar. Pollut. Bull. 110 (1), 28-51. http://creativecommons.org/licenses/by-nc-nd/4.0
Brette, F., Machado, B., Cros, C., Scholz, M.L. and Block, B.A. (2014). Crude oil impairs cardiac excitation–contraction coupling in fish. Science, 343, 772–776. DOI: 10.1126/science.1242747
Chesalina, T.L., Rudneva, I.I. and Kuzminova, N.S. (2000). Toxic effects of diesel on the fry of Black Sea Liza saliens. J. Ichthyol., 40, 429–432. ( in Russian)
Córdova de la Cruz, S.E., Martínez‑Bautista, G., Peña‑Marín, E.S., Martínez‑García, R.,
Núñez‑Nogueir, G., Adams, R.H., Burggren, W. W. and Alvarez‑González, C.A. (2022). Morphological and cardiac alterations after crude oil exposure in the early-life stages of the tropical gar (Atractosteus tropicus). Environ. Sci. Pollut. Res.,29, 22281–22292. https://doi.org/10.1007/s11356-021-17208
Crower, M., Newton, J.C., Kaltenboeck, B. and Johnson, C. (2014). Oxidative stress responses of gulf killifish exposed to hydrocarbons from the deepwater horizon oil spill: potential implications for aquatic food resources. Environ. Toxicol. Chem., 33, 370–374.
https://doi.org/10.1002/etc.2427
Dechnik, T.V. (1973). Black Sea Ichthyoplankton. (Kiev: Naukova Dumka). 235 pp.
Dubansky, B., Whitehead, A., Miller, J.T., Rice, C.D. and Galvez, F. (2014). Response to comment on “Multitissue molecular, genomic, and developmental effects of the Deepwater Horizon oil spill on resident gulf killifish (Fundulus grandis)” Environ. Sci. Tech., 48, 7679–7680. https://doi.org/10.1021/es400458p
Geraudie, P., Bakkemo, R., Milinkovitch, T. and Thomas-Guyon, H. (2016). First evidence of marine diesel effects on biomarker responses in the Icelandic scallops, Chlamys islandica. Environ. Sci, Pollut. Res., 23, 16504–16512
Goldberg, D.M. and Sparner, R.J. (1987). Glutathione reductase. (In: Bergmeyer, H.U., Bergmeyer, J., Grab, M. (Eds) Methods of Enzymatic Analysis. (pp.258–265). Weinheim; Verlag Chemic.
Halafian, A.A. (2008). Statistica 6. Chapter 8.( Moscow; Binom Publ). pp.133–152.
Incardona, J.P., Linbo, T.L. and Scholz, N.L. (2011). Cardiac toxicity of 5-ring polycyclic aromatic hydrocarbons is differentially dependent on the aryl hydrocarbon receptor 2 isoform during zebrafish development. Toxicol. Appl. Pharmacol., 257, 242–249.
https://doi.org/10.1016/j.taap.2011.09.010
Jiang, M., Li, L., Shen, G. and Shen, X. (2017). Oxidative stress in shellfish Sinonovacula constricta exposed to the water accommodated fraction of zero sulfur diesel oil and pinghu crude oil. Arch. Environ. Contam. Toxicol., 73 ( 2), 294-300. https://doi.org/10.1007/s00244-017-0391-z
Jin, J., Kurobe, T., Hammock, B.G., Lam, Ch.H., Lim, L. and Ther S. J. (2020). Toxic effects of fluridone on early developmental stages of Japanese Medaka (Oryzias latipes). Sci. Total Environ., 700, Article N 134495 https://doi.org/10.1016/j.scitotenv.2019.134495
Johann, S., Mueller, L. M. and Seiler, Th.-B. (2019). Differences in biomarker and behavioral responses to native and chemically dispersed crude and refined fossil oils in zebrafish early life tages Sci. Total Environ., 709, Article N 136174 https://doi.org/10.1016/j.scitotenv.2019.136174
Klinger, D.H., Dale, J.J., Machado, B.E., Incardona, J.P., Farwell Ch. J. and Block, B.A. (2015). Exposure to Deepwater Horizon weathered crude oil increases routine metabolic demand in chub mackerel, Scomber japonicas. Mar. Pollut. Bull., 98 (1-2), 259-266
https://doi.org/10.1016/j.marpolbul.2015.06.039
Leonov, A.V. and Fashuk, D.Y. (2006). Biotransformation of oil hydrocarbons in Karkinite Bay in Black Sea: the evaluation as the result of mathematics simulation. Water Res., 33(3), 311– 326.
Litvin, F.F. (1981). Laboratory manual of physicochemical methods in biology. Moscow: Moscow State University: (in Russian)
Martınez-Gomez, C., Vethaak, A. D., Hylland, K., Burgeot, T, Kohler, A., Lyons, B. P., Thain, J., Gubbins, M. J. and Davies, I.M. (2010). A guide to toxicity assessment and monitoring effects at lower levels of biological organization following marine oil spills in European waters. ICES J. Mar. Sci., 67, 1105–1118. https://doi.org/10.1093/icesjms/fsq017
Mazmanidi, N. (1997). Black Sea fish ecology and oil. Batumy; Adsgara, 147 pp.
Mu, X., Liu, J., Yang, K., Huang, Y., Li, X., Yang, W., Oi, S., Tif, W., Shen, G. and Li, Y. (2018). 0#Diesel water-accommodated fraction induced lipid homeostasis alteration in zebrafish embryos. Environ. Pollut., 242(4),52–961. https://doi.org/10.1016/j.envpol.2018.07. 055
Muhling, B.A., Roffer, M.A., Lamkin, J.T, .Ingrajr, GW, .Upton, MA, Gawlikowski, G F.Muller-Karger, F., S.Habtes, S. and .Richards, W.J. (2012). Overlap between Atlantic bluefin tuna spawning grounds and observed Deepwater Horizon surface oil in the northern Gulf of Mexico. Mar. Pollut. Bull., 64, 679–687. https://doi.org/10.1016/j.marpolbul.2012.01.034
Nishikimi, M, Rao, N.A. and Yagik, K. (1972). The occurrence of superoxide anion in the reaction of reduced phenazine. Biochem. Biophys. Res. Comm., 46(2), 849–854
Pasparakis, C., Esbaugh, A.J., Burggren, W. and Crosel, M. (2019). Physiological impacts of Deepwater Horizon oil on fish. Comp. Biochem. Physiol. Part C. Toxic. Pharmacol., 224, 108558 https://doi.org/10.1016/j.cbpc.2019.06.002
Patin, S.A. (2015). Marine petroleum-gas complex: factors of ecological risk. Security of the environment in petroleum-oil complex, 4, 5-12. ( in Russian).
Pereira, T.M., Merc, J., Passos, L.S., Coppo, G.C., Lopes, T.O.M., Cabral, D.S., Scherer, R. and Chippari- Gomes, A. (2018). Effects of the water soluble fraction of diesel oil (WSD) on the fertilization and development of a sea urchin (Echinometra lucunter). Ecotox. Environ. Safety, 162, 59–62. https://doi.org/10.1016/j.ecoenv.2018.06.0400.
Perrichon, P., Le Bihanic, F., Bustamante, P., Le Menach, K., Budzinski, H., Cachot, J. and Cousin, X. (2014). Influence of sediment composition on PAH toxicity using zebrafish (Danio rerio) and Japanese medaka (Oryzias latipes) embryo-larval assays. Environ. Sci. Pollut. Res., 21,13703– 13719 https://doi.org/10.1007/s11356-014-3502-7
Phan, T.C.T., Manuel, A.V., Tsutsui, N. and Yoshimatsu, T. (2020). Impacts of short-term salinity and turbidity stress on the embryonic stage of red sea bream Pagrus major. Fish Sci., 86: 119– 125. https://doi.org/10.1007/s12562-019-01368-2.
Rial, D., Beiras, R., Vázquez, J.A. and Murado, M.A. (2010). Acute Toxicity of a Shoreline Cleaner, CytoSol, Mixed With Oil and Ecological Risk Assessment of its Use on the Galician Coast. Arch. Environ. Contamin. Toxicol., 59, 407–416.
https://doi.org/10.1007/s00244-010-9492-7
Rooke, J.R., Kitchens, L., Dance, M.A., Wells, D.R.J., Falterman, B. and Cornic, M. (2013). Spatial, Temporal, and Habitat-Related Variation in Abundance of Pelagic Fishes in the Gulf of
Mexico: Potential Implications of the Deepwater Horizon Oil Spill. Plos One, 8(10), e76080.
https://doi.org/10.1371/journal.pone.0076080
Rudneva, I.I. (2014). Biomarkers for stress in fish embryos and larvae. Taylor & Francis Group; CRC Press. 206 pp.
Rudneva, I.I. (2019). Use of fish embryo biomarkers for the evaluation of mazut toxicity in marine environment. Int. Aquatic Res., 11,147–157. https://doi.org/10.1007/s40071-019-0225-x
Samuelsen, A., Daewe, U. and Wettre, C. (2019). Risk of oil contamination of fish eggs and larvae under different oceanic and weather conditions. ICES J. Mar. Sci., 76(6),1902–1916. https://doi.org/10.1093/icesjms/fsz035
Sehonova, P., Plhalova, L., Blahova, J., Doubkova, V., Prokes, M., Tichy, F., Fiorino, E., Faggio, C. and Svobodova, Z. (2017). Toxicity of naproxen sodium and its mixture with tramadol hydrochloride on fish early life stages. Chemosphere. 188: 414-423.
https://doi.org/10.1016/j.chemosphere.2017.08.151
Stancova, V., Plhalova, L., Blahova, J., Zivna, D., Bartoskova, M., Siroka, Z., Marsalek, P. and Svobodova, Z. (2017). Effects of the pharmaceutical contaminants ibuprofen, diclofenac, and
carbamazepine alone, and in combination, on oxidative stress parameters in early life stages of tench (Tinca tinca). Veter, Med., 62 (2), 90–96. doi: 10.17221/125/2016-VETMED
Velisek, J. and Stara, A. (2018). Effect of thiacloprid on early life stages of common carp yprinus carpio). Chemosphere, 194, 481-487. https://doi.org/10.1016/j.chemosphere.2017.11.176
Van der Oost, R., Beyer, J. and Vermeulen, N.B.E. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ. Toxicol. Pharmacol., 13(3),57–149. https://doi.org/10.1016/S1382-6689(02)00126-6
Zhang, J.F., Wang, X.R., Guo, H.Y., Wu, C. and Xue, Y.Q. (2004). Effects of water-soluble fractions of diesel oil on the antioxidant defenses of the goldfish Carassius auratus. Ecotoxicol. Environ. Safety, 58, 110–116. https://doi.org/10.1016/j.ecoenv.2003.08.025