Chromosomal and Nuclear Alteration Induced by Nickel Nitrate in the Root Tips of Allium cepa var. aggregatum

Document Type : Original Research Paper

Authors

1 Biology Study Program, Faculty of Mathematics and Natural Sciences, Udayana University, Jalan Raya Kampus Unud, Jimbaran, Badung, 80361, Bali, Indonesia

2 groindustrial Technology Study Program, Faculty of Agricultural Technology, Udayana University, Jalan Raya Kampus Unud, Jimbaran, Badung, Bali 80361, Indonesia

Abstract

Nickel nitrate is a heavy metal known as an environmental contaminant due to its toxicity, long environmental half-lives, and capacity for bioaccumulation.  This study aims to determine chromosomal aberration, nuclear alteration, and cell death in Allium cepa var. aggregatum L. root caused by different nickel concentrations.  Roots of Allium cepa var. aggregatum were induced by soaking bulbs in water, then transferred to a solution containing nickel (Ni) at a concentration of 20 ppm, 30 ppm, and 40 ppm for 72 hours.  Root tip mitotic chromosome preparations were done by the squash method.  The chromosome was stained with aceto-orcein and chromosomal damages were observed under a microscope.  The results showed that the mitotic index decreased from 5.025% at control to 3.144%, 2.467%, and 2.181% at immersion with 20 ppm, 30 ppm 40 ppm nickel nitrate, respectively.  Anaphase and telophase indexes in roots with Ni treatments were lower than in control, suggesting that nickel inhibits cell division.  Nickel nitrate induced chromosomal damages and nuclear abnormalities, such as sticky chromosome, fragmented chromosome, chromosome bridge and chromosome laggard, micronuclei, binucleate and nuclear budding.  The percentage of chromosomal damage increases with a higher concentration of Ni.  In situ cell visualization showed that the higher the nickel concentration, the more coloured the root tips indicating high levels of cell death.

Keywords


Akhtar, M.F., Ashraf, M., Javeed, A., Anjum, A.A., Sharif, A., Saleem, A., Akhtar, B., Khan, A.M. and Altaf, I. (2016).  Toxicity appraisal of untreated dyeing industry wastewater based on chemical characterization and short term bioassays.  Bull.  Environ.  Contam. Toxicol., 96; 502–507
Ali, H., Khan, E. and Ilahi, I. (2019).  Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation.  J. Chem., 2019; 6730305.  doi.org/10.1155/2019/6730305
Amjad, M., Raza, H., Murtaza, B., Abbas, G., Imran, M., Shahid, M., Naeem, M.A., Zakir, A. and Iqbal, M. (2020).  Nickel toxicity induced changes in nutrient dynamics and antioxidant profiling in two maize (Zea mays L.) hybrids.  Plants, 9(1); 5. doi.org/10.3390/plants9010005
Amari, T., Ghnaya, T. and Abdelly, C. (2017).  Nickel, cadmium and lead phytotoxicity and potential of halophytic plants in heavy metal extraction.  S. Afr. J. Bot., 111; 99-110. doi.org/10.1016/j.sajb.2017.03.011
Azad, N. and Iyer.  A.K.V. (2014).  Reactive oxygen species and apoptosis (In: I. Laher, (Ed) Systems biology of free radicals and antioxidants. Springer, Berlin, Heidelberg).  doi.org/10.1007/978-3-642-30018-9_15
Bonciu, E., Firbas, P., Fontanetti, C.S., Wusheng, J., Karaismailoğlu, M.C., Liu, D., Menicucci, F., Pesnya, D.S., Popescu, A., Romanovsky, A.V., Schiff, S., Ślusarczyk, J., de Souza, C.P., Srivastava, A., Sutan, A. and Papini, A. (2018).  An evaluation for the standardization of the Allium cepa test as cytotoxicity and genotoxicity assay.  Caryologia, 71(3); 191–209.  doi.org/10.1080/00087114.2018.1503496
Cortés-Eslava, J., Gómez-Arroyo, S., Risueño, M.C. and Testillano, P.S. (2018).  The effects of organophosphorus insecticides and heavy metals on DNA damage and programmed cell death in two plant models.  Environ.  Pollut., 240; 77-86. doi: 10.1016/j.envpol.2018.04.119
Dada, E.O., Osilagun, H.O. and Njoku, K.L. (2018).  Physicochemical and genotoxic evaluations of singed cowhide meat (Ponmo) wastewater.  J.  Health Pollut., 8(20); 181207.  DOI: 10.5696/2156-9614-8.20.181207.
Das, K. and Roychoudhury, A. (2014).  Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants.  Front.  Environ.  Sci., 2: 53.
Debnath, B., Paul, C., Debnath, A. and Saha, D. (2016). Evaluation of cytotoxicity of Terminalia arjuna (Roxb.) Wight & Arn.  and Moringa oleifera Lam. in root meristem cells of Allium cepa L.  J. Med.  Plants.  Stud., 4(3); 107-110.
Ding, J., He, G., Gong, W., Wen, W., Sun, W., Ning, B., Huang, S., Wu, K., Huang, C., Wu. M., Xie, W., Wang, H.  (2009).  Effects of nickel on cyclin expression, cell cycle progression and cell proliferation in human pulmonary cells. Cancer Epidemiol Biomarkers Prev., 18(6); 1720-9. doi: 10.1158/1055-9965.EPI-09-0115.
Duman, F. and Ozturk, F. (2010).  Nickel accumulation and its effect on biomass, protein content and antioxidative enzymes in roots and leaves of watercress (Nasturtium officinale R. Br.).  J. Environ.  Sci., 22(4); 526-32 DOI:10.1016/S1001-0742(09)60137-6
Fattah, Y.M. and Omer, A.H. (2021).  Evaluation of genotoxic and cytotoxic effects of Glyphosate on Allium cepa.  Technium BioChemMed. 2(1); 131-140
Gajewska, E., Skłodowska, M., Słaba, M. and Mazur, J. (2006). Effect of nickel on antioxidative enzyme activities, proline and chlorophyll contents in wheat shoots.  Biol. Plant., 50; 653–659.  doi.org/10.1007/s10535-006-0102-5
Georgiadou, E.C., Kowalska, E., Patla, K., Kulbat, K., Smolińska, B., Leszczyńska, J., and Fotopoulos, V. (2018).  Influence of heavy metals (Ni, Cu, and Zn) on nitro-oxidative stress responses, proteome regulation and allergen production in basil (Ocimum basilicum L.).  Front. Plant Sci., 9; 862 DOI=10.3389/fpls.2018.00862
Ghori, N.H., Ghori, T., Hayat, M.Q., Imadi, S.R., Gul, A., Altay, V. and Ozturk, M.  (2019) Heavy metal stress and responses in plants.  Int. J. Environ.  Sci. Technol., 16; 1807–1828.  doi.org/10.1007/s13762-019-02215-8
Guo, H., Liu, H., Wu, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X. and Zhao, L. (2019). Nickel carcinogenesis mechanism: DNA damage.  Int. J. Mol.  Sci., 20(19); 4690. doi.org/10.3390/ijms20194690
Graña, E.  (2018).  Mitotic index.  (In. A.M. Sánchez-Moreiras, M.J. Reigosa (Eds) Advances in plant ecophysiology technique.  Springer, Switzerland)
Hu, Y.,  Wang, N.S., Hu, X.J., Lin, X.Y., Feng, Y. and Jin, CW.  (2013). Nitrate nutrition enhances nickel accumulation and toxicity in Arabidopsis plants. Plant Soil 371, 105–115. doi.org/10.1007/s11104-013-1682-4
Ilbas, A.I. and Yilmaz, S.  (2011). Cytotoxicity of Aloe vera gel extracts on Allium cepa root tip cells.  Turk.  J. Bot., 36(3); 263-268
Iyaka, Y.A. (2011). Nickel in soils: A review of its distribution and impacts. Sci. Res. Essays. 6(33), pp. 6774-6777. DOI: 10.5897/SREX11.035
Kuchy, A.H., Wani, A.A. and Kamili, A.N.  (2016). Cytogenetic effects of three commercially formulated pesticides on somatic and germ cells of Allium cepa.  Environ.  Sci. Pollut. Res., 23; 6895–6906.  doi.org/10.1007/s11356-015-5912-6
Kumar, G. and Rai ,P.  (2007).  Genotoxic potential of mercury and cadmium in soybean.  Turk.  J. Biol, 31: 13-15
Kumar, G. and Srivastava, A.  (2015).  Clastogenic and mito-inhibitory effect of heavy metals in root meristems of Vicia faba.  Chromosome Bot., 10 (1); 23-29.
Kumar, V. and Nagpal, A.K  (2015). Genotoxic effects of lead acetate employing Allium sativum root chromosomal aberration assay.  Int. J. Adv. Res. Biol. Sci., 2(1); 193-199
Kwon, M., Leibowitz, M.L. and Lee, J.H.  (2020)  Small but mighty: the causes and consequences of micronucleus rupture.  Exp. Mol.  Med., 52; 1777–1786.  doi.org/10.1038/s12276-020-00529-z
Lešková, A., Zvarík, M., Araya, T. and Giehl, R.F.H.  (2020). Nickel toxicity targets cell wall-related processes and PIN2-mediated auxin transport to inhibit root elongation and gravitropic responses in Arabidopsis. Plant Cell Physiol., 61(3); 519–535 doi.org/10.1007/s11356-015-5912-6
Mangalampalli, B., Dumala, N. and Grove, P.  (2018).  Allium cepa root tip assay in assessment of toxicity of magnesium oxide nanoparticles and microparticles.  Res. J. Environ.  Sci., 66; 125-137. doi: 10.1016/j.jes.2017.05.012 
Mesi, A.D. and Kopliku, D.  (2014). Toxic potency evaluation of metal-doped river water (Cr, Cu and Pb), on Allium cepa L.  Athens J. Sci., 1(4); 255-267.
Morales, M.E., Derbes, R.S,, Ade, C.M., Ortego, J.C., Stark, J., Deininger, P.L. and Roy-Engel, A.M . (2016). Heavy metal exposure influences double strand break DNA repair outcomes. PloS one,11(3), e0151367. doi.org/10.1371/journal.pone.0151367
Nefic, H., Musanovic, J., Metovic, A. and Kurtesh,i K. (2013).  Chromosomal and nuclear alterations in root tip cells of Allium cepa L. induced by alprazolam.  Med.  Arch.,  67(6): 388–392. doi.org/10.5455/medarh.2013.67.388-392
Parlak, K.U.  (2016).  Effect of nickel on growth and biochemical characteristics of wheat (Triticum aestivum L.) seedlings.  NJAS-Wagen J. Life Sci., 76; 1-5
Pavlova, D.  (2017).  Nickel effect on root-meristem cell division in Plantago lanceolata (Plantaginaceae) seedlings.  Aust.  J. Bot., 65: 446-452.  doi.org/10.1071/BT17054
M.Poonkothai, M. and  Vijayavathi, B.S. (2012). Nickel as an essential element and a toxicant. Int. J. Environ. Sci. 1(4): 285-288
Rosculete, C.A., Bonciu, E., Rosculete, E. and Olaru, L.A.  (2018). Determination of the environmental pollution potential of some herbicides by the assessment of cytotoxic and genotoxic effects on Allium cepa.  Int. J. Environ.  Res. Public Health, 16(1); 75.  doi:10.3390/ijerph16010075
Roy, B., Krishnan, S.P.,  Chandrasekaran, N. and  A. Mukherjee. (2019).  Toxic effects of engineered nanoparticles (metal/metal oxides) on plants using Allium cepa as a model system
Compr.  Anal.  Chem., 2019; 125-143
Sabeen, M., Mahmood, Q., Bhatti, A.Z., Faridullah, Irshad, M., Bilal, M., Hayat, M.T., Irshad, U., Akbar, T.A., Arslan, M., and Shahid, N. (2020).  Allium cepa assay based comparative study of selected vegetables and the chromosomal aberrations due to heavy metal accumulation.  Saudi J. Biol., 27(5); 1368-1374. doi.org/10.1016/j.sjbs.2019.12.011
Sarac, I., Bonciu, E., Butnariu,, M, Petrescu, I. and Madosa, E.  (2019).  Evaluation of the cytotoxic and genotoxic potential of some heavy metals by use of Allium test.  Caryologia, 72(2); 37-43. doi: 10.13128/cayologia-256
Shahzad, B., Tanveer, M., Rehman, A., Cheema, S.A., Fahad, S., Rehmand, S. and Sharma, A.  (2018). Nickel; whether toxic or essential for plants and environment - A review.  Plant Physiol.  Biochem.,132; 641-651. doi: 10.1016/j.plaphy.2018.10.014.
Sychta, K., Słomka, A. and Kuta E.  (2021). Insights into plant programmed cell death induced by heavy metals-discovering a terra incognita.  Cells.  10(1); 65.  doi: 10.3390/cells10010065.
Tedesco, S.B. and Laughinghouse, HD.  (2012).  Bioindicator of genotoxicity: The Allium cepa test.  (In J. Srivastava (Ed). Environmental contamination. London, UK) DOI: 10.5772/31371
Trofimov, V.A. and Pyansina, T.A.  (2005) Mitogenic and Mutagenic Effects of Ionized Air on Allium fistulosum L. Russ. J. Genet., 41; 1008–1013. doi.org/10.1007/s11177-005-0192-8
Vazhangat, P. and Thoppil J.E.  (2016).  Apoptotic induction via membrane/DNA damage and metabolic inactivation by synthetic food colorants in Allium cepa root meristem.  Turk.  J. Biol., 40; 922-933
Yusuf, M., Fariduddin , Q., Hayat, S. and Ahmad, A. (2011). Nickel: An overview of uptake, essentiality and toxicity in plants. Bul.l Environ. Contam. Toxicol. 86:1–17. DOI 10.1007/s00128-010-0171-1