Abbasimaedeh, P. and Mehrdadi, N. (2012). Assessment of groundwater basins in Tehran quality with the World Health Organization Index. International Journal of Water Engineer, 64, 10 – 19.
Aggarwal, CC. (2015). Outlier analysis, Data mining. Springer, 237–263.
Asadpour, G.A. and Nasrabadi, T. (2011). Municipal and medical solid waste management in different districts of Tehran, Iran. Fresenius Environmental Bulletin, 20(12), 3241 – 3245.
Asghari Moghaddam, A., Nadiri, A. and Fijani, E. (2006). Ability to study different Models of Artificial Neural Networks to Evaluate Groundwater Water levels in the Hard Formation, Tenth. Conference of Geological Society, Tehran.
Chan, H.J. (2000). Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea. J Hydrol, 253, 194–210.
Chapagain, S.K., Pandey, V.P., Shrestha, S., Nakamura, T. and Kazama, F. (2010). Assessment of deep groundwater quality in Kathmandu Valley using multivariate statistical techniques. Water Air and Soil Pollution, 210(1-4), 277 – 288.
Coppola, E., Szidarovszky, F., Poulton, M. and Charles, E. (2003). Artificial Neural Network Approach for Predicting Transient Water Levels in a Multi-Layered Groundwater system under variable state. Pumping and climate conditions, Hydrologic engineering, 8(6), 348 – 360.
Coulibaly, P., Anctil, F., Aravena, R. and Bobée, B. (2001). Artificial neural network modelling of water table depth fluctuations. Water resources research, 37(4), 885 – 896.
Dehghani, A.A., Asgari, M. and Mosaedi, A. (2009). Comparison of Geostatistics, Artificial Neural Networks and Adaptive Neuro-Fuzzy Inference System Approaches in groundwater level interpolation (case study: Ghazvin aquifer), Journal of Agriculture science natural resource, 16(1), 517 – 528.
DiBiase, D., DeMers, M., Johnson, A., Kemp, K., Luck, A. T., Plewe, B. and Wentz, E. (2006). Principles of Kriging. The Geographic Information Science & Technology Body of Knowledge. Washington, DC: Association of American Geographers. ((2nd Quarter 2016, first digital).
Esmaeili Varaki, M., Khayat Khalaghi, M. and Shafiei, M. (2004). Provide a model for intelligent water level fluctuations estimated alluvial groundwater aquifer using an artificial neural network. Articles first annual conference of Iran water resources management, 1 – 11.
Hosaini, M.T., Siosemarde, A., Fathi, P. and Siosemarde, M. (2007). Application of artificial neural networks (ANN) and multiple regressions for estimating and assessing the performance of dry farming wheat yield in Ghorveh Region, Kurdistan province. Agricultural research: Water and soil and plant, 7(1), 41 – 54.
Khalili, S.R., Davari, k. and Mousavi Baygi, M. (2008). Monthly Precipitation Forecasting Using Artificial Neural Networks: A Case Study for Synoptic Station of Mashad. Journal Water and Soil, Agricultural Science & Technology Ferdowsi University of Mashhad, 22(1), 39 – 99.
Kumar, M, Raghuwanshi, N., Singh, R., Wallender, W., and Pruitt, W. (2002). Estimating evaporate transpiration using artificial neural networks. Journal of Irrigation and drainage engineering ASCE 128, 4, 224 – 233.
Maedeh, PA, Mehrdadi, N., Bidhendi GRN. and Abyaneh HZ. (2013).Application of artificial neural network to predict Total dissolved solids variations in groundwater of Tehran Plain, Iran. Int J Environ Sustain, 2(1), 10-20.
Maghrebi, M., Noori, R., Partani, S., Araghi, A., Barati, R., Farnoush, H. and Haghighi, A. T. (2021). Iran’s groundwater hydrochemistry. Earth and Space Science, 8, DOI: 10.1029/2021EA001793.
Mehrdadi, N., Hasanlou, H., Jafarzadeh, M.T., Hasanlou, H. and Abodolabadi, H. (2012). Simulation of low TDS and biological units of Fajr industrial wastewater Treatment plant using artificial neural network and principal component analysis hybrid method. Journal of water resource and protection, 4, 370 – 376.
Nasrabadi, T., Nabi Bidhendi, GR., Karbassi, AR. and Mehrdadi, N. (2010). Evaluating the efficiency of sediment metal pollution indices in interpreting the pollution of Haraz River sediments, southern Caspian Sea basin. Environ Monit Assess, 171,395–410.
Nasrabadi, T. and Abbasi Maedeh, P. (2014a). Groundwater quality assessment in southern parts of Tehran plain. Iran. Environ Earth Sci, 71, 2077–2086.
Nasrabadi, T. and Abbasi Maedeh, P. (2014b). Groundwater quality degradation of urban areas (case study: Tehran city, Iran). Int. J. Environ. Sci. Technol, 11, 293–302.
Nolan, B.T. (2001). Relating nitrogen sources and aquifer susceptibility to nitrate in shallow groundwaters of the United States. Groundwater, 39, 290–299.
Noori, R., Farahani, F., Jun, C., Aradpour, S., Bateni, S.M., Ghazban, F., Hosseinzadeh, M., Maghrebi, M., Naseh, M.R.V. and Abolfathi, S. (2022). A non-threshold model to estimate carcinogenic risk of nitrate-nitrite in drinking water. J. Clean. Prod., 363., DOI 10.1016/j.jclepro.2022.132432.
Noori R, Maghrebi M, Mirchi A, Tang Q, Bhattarai R, Sadegh M, Noury M, Torabi Haghighi A, Kløve B, Madani K. Anthropogenic depletion of Iran’s aquifers. Proc Natl Acad Sci U S A. 2021 Jun 22;118(25):e2024221118. DOI: 10.1073/pnas.2024221118.
Pandey, V.P. and Kazama, F. (2011). Hydrogeologic characteristics of groundwater aquifers in Kathmandu Valley, Nepal. Environmental Earth Sciences. 62(8), 1723 – 1732.
Pandey, V.P. and Kazama, F. (2012). Groundwater storage potential in the KathmanduValley’s shallow and deep aquifers In Shrestha S., Pradhananga D., Pandey V.P. Kathmandu Valley Groundwater Outlook, AIT/SEN/ CREEW/ICRE-UY, 31 – 38.
Pandey, V.P., Shrestha, S., Chapagain, S.K. and Kazama, F. (2011). A framework for measuring groundwater sustainability. Environmental Science & Policy, 14(4), 396 – 407.
Pandey, V.P., Shrestha, S. and Kazama F. (2012). Groundwater in the Kathmandu Valley: development dynamics, consequences and prospects for sustainable management. European Water, 37, 3 – 14.
Pazand, K., Hezarkhani, A., Ghanbari, Y. and Aghavali, N. (2012). Geochemical and quality assessment of groundwater of Marand Basin, East Azarbaijan Province, northwestern Iran. Environ Earth Sci, 67(4), 1131–1143.
Sutton, R.S., and Barto, R.G. (2018). Reinforcement Learning An Introduction, Second, MIT Press Cambridge.
Stigter, T.Y., Van Ooijen, S.P.J., Post, V.E.A., Appelo, C.A.J. and Carvalho Dill, A.M.M. (1998). A hydrogeological and hydrochemical explanation of the groundwater composition under irrigated land in a Mediterranean environment, Algarve, Portugal. J Hydrol, 208, 262–279.
Sun, L., Yan, H., Xin, K. and Tao, T. (2019). Contamination source identification in water distribution networks using convolutional neural network. Environmental Science and Pollution Research, 26, 36786–36797.
T. Taulli. (2019). Artificial Intelligence Basics. Springer.
Taherion, M. (2006). Artificial neural network and its application in environmental engineering. First conference on environmental engineering., Tehran: Tehran Univ.
Vizintin, G., Souvent, P., Veselic, M. and Curk, B. (2009). Determination of urban groundwater pollution in alluvial aquifer using linked process models considering urban water cycle. J Hydrol, 377, 261–273.
Zhang, Z. and Sabuncu, M. (2018). Generalized cross-entropy loss for training deep neural networks with noisy labels. Advances in neural information processing systems, 31, 8778–8788.