Characterization and Evaluation of the Nickel-Removal Capacity of Kluyvera cryocrescens M7 Isolated from Industrial Wastes

Document Type : Original Research Paper

Authors

Department of Biotechnology and Bioinformatics, NIIT University, Neemrana, Rajasthan, India - 301705

Abstract

Heavy metal contamination poses grave risks to all kinds of life. The fastest growing automotive, electroplating, and battery industries release the most common heavy metal, Nickel, into the environment, which has lethal impacts on human health. Our research aims to find Ni-resistant bacteria in the metal-contaminated soil that have a great potential for removing Ni from the environment. Attempts have been made to extract and characterize Ni-resistant bacteria from automobile and electroplating industry waste-contaminated soil using serial dilution, streak plating, and various morphological, biochemical, and genetic techniques. The maximum tolerable concentration of Ni and other heavy elements, such as cadmium, lead, and aluminium for the selected isolate, was investigated using the UV-Vis spectrophotometric method. Additionally, the bacterial strain's ability to remove Ni was assessed using an atomic absorption spectrophotometer.  The current research reveals a novel strain of Kluyvera cryocrescens that could withstand Ni, Cd, Pb, Al, and combinations of these heavy metals. The maximum tolerance concentration of K. cryocrescens M7 for Ni, Cd, Pb, and Al was found to be 150 ppm, 200 ppm, 1000 ppm, and 150 ppm, respectively. Additionally, it was also observed that the bacterial strain could remove Ni by 29.57%, 35.36%, 48.41%, 46.91%, and 44.88% after 12, 24, 48, 72, and 96 hours, respectively. The strain has also exhibited resistance to vancomycin, ampicillin, carbenicillin, and streptomycin. This research discovered a novel bacterial strain, K. cryocrescens M7 that may be beneficial for removing heavy metals, particularly Ni, from metal-contaminated soil.

Keywords

Main Subjects


Adiama, Y. B., Sawyerr, O. H., Olaniyi, O. A., Fregene, A. F., Alabede, M. & Raimi, M. O. (2022). Assessment of Microbiological Quality of Ready to Eat Food Served in Ships Along Warri, Koko & Port Harcourt Water Ways, Nigeria. Online J. Microbiol. Res., 1(1), 1–7. 
Afolabi, A. S. & Raimi, M. O. (2021) When Water Turns Deadly: Investigating Source Identification & Quality of Drinking Water in Piwoyi Community of Federal Capital Territory, Abuja Nigeria. Online J. Chem., 1, 38-58.
Al-Ansari, M. M., Benabdelkamel, H., AlMalki, R. H., Rahman, A. M. A., Alnahmi, E., Masood, A., Ilavenil, S. & Choi, K. C. (2021). Effective removal of heavy metals from industrial effluent wastewater by a multi metal & drug resistant Pseudomonas aeruginosa strain RA-14 using integrated sequencing batch reactor. Environ. Res., 199, 111240.
Ashraf, S., Ali, Q., Zahir, Z. A., Ashraf, S. & Asghar, H. N. (2019). Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol. Environ. Saf., 174, 714-727.
Babar, Z., Khan, M., Chotana, G. A., Murtaza, G. & Shamim, S. (2021). Evaluation of the potential role of Bacillus altitudinis MT422188 in nickel bioremediation from contaminated industrial effluents. Sustainability, 13(13), 7353.
Bauer, A. W., Kirby, W. M. Sherris, J. C. & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin.   Pathol., 45(4), 493-496.
Bhutada, S. A. & Dahikar, S. B. (2017). Evaluation of removal of heavy metals by microorganisms isolated from industrial effluents. J. Appl. Adv. Res., 2(3), 156-160.
Bisht, H. & Kumar, N. (2022). Plant & microbe mediated bioremediation: A long-term remedy for heavy metal pollution. Asia-Pac. J. Mol. Biol. Biotechnol., 30(3), 69-90.
Boechat, C. L., Quadros, P. D. D., Giovanella, P., Brito, A. C. C., Carlos, F. S., Sá, E. L. S. D. & Camargo, F. A. D. O. (2018). Metal-resistant rhizobacteria change soluble-exchangeable fraction in multi-metal-contaminated soil samples. Rev. Bras. Ciênc. Solo, 42.
Bonnet, R. (2004). Growing group of extended-spectrum β-lactamases: the CTX-M enzymes. Antimicrob. Agents Chemother., 48(1), 1-14.
Buchanan, R.E. & Gibbons, N. E. (1974). Bergey’s Manual of Determinative Bacteriology, 8th Edition, Williams & Wilkins, Baltimore, 1268. 
Bukowski, M., Piwowarczyk, R., Madry, A., Zagorski-Przybylo, R., Hydzik, M. & Wladyka, B. (2019). Prevalence of antibiotic & heavy metal resistance determinants & virulence-related genetic elements in plasmids of Staphylococcus aureus. Front. Mirobiol., 10, 805.
Burd, G. I., Dixon, D. G. & Glick, B. R. (2000). Plant growth promoting bacteria that decreases heavy metal toxicity in plants. Can. J. Microbiol., 46, 237–245.
Chattopadhyay, M. K. & Grossart, H. P. (2011). Antibiotic & heavy metal resistance of bacterial isolates obtained from some lakes in northern Germany. NSHM J. Pharm. Healthc. Manag., 2, 44-45.
Chen, J., Li, J., Zhang, H., Shi, W. & Liu, Y. (2019). Bacterial heavy-metal & antibiotic resistance genes in a copper tailing dam area in northern China. Front. Microbiol., 10, 1916.
CLSI. (2018). Performance Standards for Antimicrobial Disk Susceptibility Tests, M100S, 28th Ed.
Feruke-Bello, Y. M., Babalola, G. & Odeyemi, O. (2022). Genetic Variability of Klebsiella Variicola by RAPD-PCR Technique & Bioremoval of Pb2+ & Cd2+ from Simulated Contaminated Soils. Soil Sediment Contam., 31(6), 770-784.
Gao, L. L., Lu, Y. C., Zhang, J. L., Li, J. & Zhang, J. D. (2019). Biotreatment of restaurant wastewater with an oily high concentration by newly isolated bacteria from oily sludge. World J. Microbiol. Biotechnol., 35(11), 1-11.
Genchi, G., Carocci, A., Lauria, G., Sinicropi, M. S. & Catalano, A. (2020). Nickel: Human health & environmental toxicology. Int. J. Environ. Res. Public Health, 17(3), 679.
Gumuscu, B., Cekmecelioglu, D. & Tekinay, T. (2015). Complete dissipation of 2, 4, 6-trinitrotoluene by in-vessel composting. RSC Adv., 5(64), 51812-51819.
Gupta, A., Joia, J., Sood, A., Sood, R., Sidhu, C. & Kaur, G. (2016). Microbes as potential tool for remediation of heavy metals: a review. J. Microb. Biochem. Technol., 8(4), 364-372.
Haroun, A. A., Kamaluddeen, K. K., Alhaji, I., Magaji, Y. & Oaikhena, E. E. (2017). Evaluation of heavy metal tolerance level (MIC) & bioremediation potentials of Pseudomonas aeruginosa isolated from Makera-Kakuri industrial drain in Kaduna, Nigeria. Eur. J. Exp. Biol., 7(5), 28.
Heidari, P., Sanaeizade, S. & Mazloomi, F. (2020). Removal of nickel, copper, lead & cadmium by new strains of Sphingomonas melonis E8 & Enterobacter hormaechei WW28. J. Appl. Biotechnol. Rep., 7(4), 208-214.
Irawati, W., Parhusip, A. J. & Sopiah, N. (2015). Heavy metals biosorption by copper resistant bacteria of Acinetobacter Sp. IrC2. Microbiol. Indones., 9(4), 4-4.
Jamla, M., Khare, T., Joshi, S., Patil, S., Penna, S. & Kumar, V. (2021). Omics approaches for underst&ing heavy metal responses & tolerance in plants. Curr. Plant Biol., 27, 100213.
Jeevaraj, T., Balakrishnan, I. & Arockiya, A. M. (2022). Preliminary investigation on multi metal tolerance of Bacillus thuringiensis isolated from industrial effluent soil. Acta Ecologica Sinica, 42(6), 684-692.
Kapahi, M. & Sachdeva, S. (2019). Bioremediation options for heavy metal pollution. J. Health Pollut., 9(24).
Khan, M., Ijaz, M., Chotana, G. A., Murtaza, G., Malik, A. andShamim, S. (2022). Bacillus altitudinis MT422188: A potential agent for zinc bioremediation. Bioremediat. J., 26(3), 228-248.
Masoumi, F., Khadivinia, E., Alidoust, L., Mansourinejad, Z., Shahryari, S., Safaei, M., Mousavi, A., Salmanian, A.H., Zahiri, H.S., Vali, H. & Noghabi, K. A. (2016). Nickel & lead biosorption by Curtobacterium sp. FM01, an indigenous bacterium isolated from farmland soils of northeast Iran. J. Environ. Chem. Eng., 4(1), 950-957.
Mathivanan, K., Ch&irika, J. U., Vinothkanna, A., Yin, H., Liu, X. & Meng, D. (2021). Bacterial adaptive strategies to cope with metal toxicity in the contaminated environment–A review. Ecotoxicol. Environ. Saf., 226, 112863.
Meshram, P. & Pandey, B. D. (2018). Advanced review on extraction of nickel from primary & secondary sources. Miner. Process. Extr. Metall. Rev., 40(3), 157-193
Murínová, S. & Dercová, K. (2014). Response mechanisms of bacterial degraders to environmental contaminants on the level of cell walls & cytoplasmic membrane. Int. J. Microbiol., 2014.
Mutoh, Y., Kobe, T., Hirano, T., Ichihara, T., Takenaka, H., Niinomi, T. &  Kuroiwa, M. (2019). The first case of third-generation cephalosporins resistant Kluyvera ascorbata biliary tract infection in Japan: a case report & review of the literature. IDCases, 15, e00498.
Mwandira, W., Nakashima, K., Kawasaki, S., Arabelo, A., Banda, K., Nyambe, I., Chirwa, M., Ito, M., Sato, T, Igarashi, T. & Ishizuka, M. (2020). Biosorption of Pb (II) & Zn (II) from aqueous solution by Oceanobacillus profundus isolated from an abandoned mine. Sci. Rep., 10(1), 1-9.
Nath, S., Paul, P., Roy, R., Bhattacharjee, S. & Deb, B. (2019). Isolation & identification of metal-tolerant & antibiotic-resistant bacteria from soil samples of Cachar district of Assam, India. SN Appl. Sci., 1(7), 1-9.
Nguyen, C. C., Hugie, C. N., Kile, M. L. & Navab-Daneshmand, T. (2019). Association between heavy metals & antibiotic-resistant human pathogens in environmental reservoirs: a review. Front. Environ. Sci. Eng., 13(3), 1-17.
Nwagwu, E. C., Yilwa, V. M., Egbe, N. E. & Onwumere, G. B. (2017). Isolation & characterization of heavy metal tolerant bacteria from Panteka stream, Kaduna, Nigeria & their potential for bioremediation. Afr. J. Biotechnol., 16(1), 32-40.
Oladipo, O. G., Ezeokoli, O. T., Maboeta, M. S., Bezuidenhout, J. J., Tiedt, L. R., Jordaan, A. & Bezuidenhout, C. C. (2018). Tolerance & growth kinetics of bacteria isolated from gold & gemstone mining sites in response to heavy metal concentrations. J. Environ. Manage., 212, 357-366.
Olalekan MR, Olawale HS, Clinton IE & Opasola AO (2022) Quality Water, Not Everywhere: Assessing the Hydrogeochemistry of Water Quality across Ebocha-Obrikom Oil & Gas Flaring Area in the Core Niger Delta Region of Nigeria. Pollution, 8(3): 751-778. 
Oyewole, O. A., Zobeashia, S. S. L. T., Oladoja, E. O., Raji, R. O., Odiniya, E. E. & Musa, A. M. (2019). Biosorption of heavy metal polluted soil using bacteria & fungi isolated from soil. SN Appl. Sci., 1(8), 1-8.
Paul, A. & Mukherjee, S. K. (2016). Enterobacter asburiae KUNi5, a nickel resistant bacterium for possible bioremediation of nickel contaminated sites. Polish J. Microbiol., 65(1).
Raimi, M. O., Sawyerr, H. O., Ezekwe, I. C. & Gabriel, S. (2022). Toxicants in Water: Hydrochemical Appraisal of Toxic Metals Concentration & Seasonal Variation in Drinking Water Quality in Oil & Gas Field Area of Rivers State, Nigeria. In P. H. Saleh, & P. A. I. Hassan (Eds.), Heavy Metals - New Insights. IntechOpen. 
Raimi, O., Ezekwe, C., Bowale, A. & Samson, T. (2022) Hydrogeochemical & Multivariate Statistical Techniques to Trace the Sources of Ground Water Contaminants & Affecting Factors of Groundwater Pollution in an Oil & Gas Producing Wetland in Rivers State, Nigeria. Open J. Yangtze Oil Gas, 7, 166-202. 
Raimi, M. & Sawyerr, H. (2022) Preliminary Study of Groundwater Quality Using Hierarchical Classification Approaches for Contaminated Sites in Indigenous Communities Associated with Crude Oil Exploration Facilities in Rivers State, Nigeria. Open J. Yangtze Oil Gas, 7, 124-148. 
Raimi, O. M., Sawyerr, O.H., Ezekwe, C.I. & Gabriel, S. (2022). Many oil wells, one evil: comprehensive assessment of toxic metals concentration, seasonal variation & human health risk in drinking water quality in areas surrounding crude oil exploration facilities in rivers state, Nigeria. International Journal of Hydrology. 6(1), 23‒42. 
Rodríguez, M. M., Power, P., Naas, T., & Gutkind, G. (2021). Redefining the origin & evolution of chromosomally encoded bla CTX-M/KLU in the context of a revised taxonomy of genus Kluyvera. Antimicrob. Agents Chemother., 65(7), e02424-20.
Sharifi-Rad, M., Anil Kumar, N. V., Zucca, P., Varoni, E. M., Dini, L., Panzarini, E., Rajkovic, J., Tsouh Fokou, P. V., Azzini, E., Peluso, I. & Sharifi-Rad, J. (2020). Lifestyle, oxidative stress, & antioxidants: Back & forth in the pathophysiology of chronic diseases. Front. Physiol., 11, 694.
Shome, R. (2020). Role of microbial enzymes in Bioremediation. eLifePress, 1(1), 15-20.
Steiner, J. J., Poklemba, C. J., Fjellstrom, R. G. & Elliott, L. F. (1995). A rapid one-tube genomic DNA extraction process for PCR & RAPD analyses. Nucleic Acids Res., 23(13), 2569.
Sodhi, K. K., Kumar, M. & Singh, D. K. (2020). Multi-metal resistance & potential of Alcaligenes sp. MMA for the removal of heavy metals. SN Appl. Sci., 2(11), 1-13.
Stock, I. (2005). Natural antimicrobial susceptibility patterns of Kluyvera ascorbata & Kluyvera cryocrescens strains & review of the clinical efficacy of antimicrobial agents used for the treatment of Kluyvera infections. J. Chemother., 17(2), 143-160.
Suhani, I., Sahab, S., Srivastava, V. & Singh, R. P. (2021). Impact of cadmium pollution on food safety & human health. Curr. Opin. Toxicol., 27, 1-7.
Suman, J., Uhlik, O., Viktorova, J. & Macek, T. (2018). Phytoextraction of heavy metals: a promising tool for clean-up of polluted environment. Front. Plant Sci., 9, 1476.
Swindell, S. R. & Plasterer, T. N. (1997). Seqman. In Sequence data analysis guidebook, Springer, Totowa, NJ, 75-89.
Syed, A., Zeyad, M. T., Shahid, M., Elgorban, A. M., Alkhulaifi, M. M. & Ansari, I. A. (2021). Heavy metals induced modulations in growth, physiology, cellular viability, & biofilm formation of an identified bacterial isolate. ACS Omega, 6(38), 25076-25088.
Tamura, K., Stecher, G. & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol., 38(7), 3022–3027.
Tietze, D., Sartorius, J., Koley Seth, B., Herr, K., Heimer, P., Imhof, D., Mollenhauer, D. & Buntkowsky, G. (2017). New insights into the mechanism of nickel superoxide degradation from studies of model peptides. Sci. Rep., 7(1), 1-15.
Torres, E. (2020). Biosorption: A review of the latest advances. Processes, 8(12), 1584.
Vélez, J. M. B., Martínez, J. G., Ospina, J. T. & Agudelo, S. O. (2021). Bioremediation potential of Pseudomonas genus isolates from residual water, capable of tolerating lead through mechanisms of exopolysaccharide production & biosorption. Biotechnol. Rep., 32, e00685.
Watson, J. R., Wallihan, R. & Antonara, S. (2018). Less Commonly Encountered Enterobacteriaceae. (In Principles & Practice of Pediatric Infectious Diseases (pp. 829-831). Elsevier).
Yaashikaa, P. R., Kumar, P. S., Jeevanantham, S. & Saravanan, R. (2022). A review on bioremediation approach for heavy metal detoxification & accumulation in plants. Environ. Pollut., 119035.
Zhai, Y., He, Z., Kang, Y., Yu, H., Wang, J., Du, P., Zhang, Z., Hu, S. & Gao, Z. (2016). Complete nucleotide sequence of pH11, an IncHI2 plasmid conferring multi-antibiotic resistance & multi-heavy metal resistance genes in a clinical Klebsiella pneumoniae isolate. Plasmid, 86, 26-31.