Abbasi, E. (2006). Culture of photographic. 4th Edition (Persian Language)., Soroush, Tehran.
Aktas, S. (2008). Silver recovery from silver-rich photographic processing solutions by copper. J. Can. Met. Qua., 47(1): 37-44.
Aktas, S., Morcali, M. H. & Yucel, O. (2010). Silver recovery from waste radiographic films by cementation & reduction, J. Can. Met. Qua., 49 (2); 147-154.
Asadi, M. & Azordeh, S. M. (2020). Removal of heavy metals Pb2+ & Cd2+ from water with nano-porous materials. Nashrieh Shimi ve Mohandesi Shimi Iran (NSMSI)., 39 (4); 13-23.
Azarkhalil, M. S. & Keyvani, B. (2016). Synthesis of silver nanoparticles from spent X-Ray photographic solution via chemical rreduction. Iran. J. Chem. Chem. Eng (IJCCE)., 35 (3); 1-8.
Chen, W. T., Ma, C. C., Lee, M. H., Chu, Y. C., Tsai, L. C., Shu, C. M. (2012). Silver recovery & chemical oxygen demand (COD) removal from waste fixer solutions. J. App. Eng., 100; 187- 192.
Eaton, G. T. (1986). Photographic Chemistry in Black-White & color Photography.
Endres, S. C., Ciacchi, L. C. & Mädler, L. (2021). A review of contact force models between nanoparticles in agglomerates, aggregates, & films. J. Aero. Sci., 153; 105719.
Erku, M. D., Jabasingh, S. A. & Yimam, A. (2017). Silver recovery from waste x-ray photographic films collected from hospitals in Addis Ababa. Afr. J. Online (AJOL)., 35; 1-7.
Galarpe, V. R. K. R. & Leopoldo, G. D. (2017). Potential recovery of silver (Ag) from X-ray fixer waste by alkaline treatment. J. Eng. Tech. App. Sci. Res., 7 (5); 2094-2097.
Galvan, V. I., Ruelas, A. G. M. & Valdivieso, A. L. (2009). Radiological Waste Processing for the Recovery of Silver through Cementation with Zinc Powder. J. Sep. Sci. Tech., 44 (11); 2696- 2706.
Golgolab, D. (1991). Photographic technical review. 2nd Edition., Jihad Danishgahi, Tehran.
Goshima, T., Hori, K. & Yamamoto, A. (1994). Recovery of silver from radiographic fixer. Oral Surg Oral Med Oral Pathol., 77 (6); 684-8.
Henry, F., Marchal, P., Bouillard, J., Vignes, A., Dufaud, O. & Perrin, L. (2013). The Effect of Agglomeration on the Emission of Particles from Nanopowders Flow. J. Chem. Eng. Tran., 31; 811-816.
Horenstein, H. (2005). Black & white photography-A basic manual. Little, Brown & Company. New York-Boston.
Jacobson, C. I., Jacobson, K. I. & Jacobson, R. E. (1980). Developing: The Negative Technique, The Manuals of Photo-Technique. Focal Press; Focal/Hastings House.
Kamali, M., Ghorashi, S. A. A. & Asadollahi, M. A. (2012). Controllable Synthesis of Silver Nanoparticles Using Citrate as Complexing Agent: Characterization of Nanopartciles & Effect of pH on Size & Crystallinity. Iran. J. Chem. Chem. Eng. (IJCCE)., 31 (4); 21-28.
Lanje, A. S., Sharma, S. J. & Pode, R. B. (2010). Synthesis of silver nanoparticles: A safer alternative to conventional antimicrobial & antibacterial agents. J. Chem. Pharm. Res., 2 (3); :478-483.
Lupi, C. & Pasquali, M. (2008). The electrolytic recovery of silver from photographic fixing baths. Conference: REWAS 2008At: Cancun, Mexico.
Masebinu, S. O. & Muzenda, E. (2014). Review of Silver Recovery Techniques from Radiolographic Effluent & X-ray film Waste. Proceedings of the World Congress on Engineering & Computer Science., Vol II.
Moeglich, K. (1977). Electrolytic process for recovery of silver from photographic fixer solution. US4021319 A.
Mohaghegh, S., Osouli-Bostanabad, K., Nazemiyeh, H., Javadzadeh, Y. h., Parvizpur, A., Barzegar-Jalali, M., & Adibkia, K. (2020). A comparative study of eco-friendly silver nanoparticles synthesis using Prunus domestica plum extract & sodium citrate reducing agents. J. Adv. Pow. Tech., 31 (3); 1169-1180.
Nandatamadini, F., Karina, S., Nandiyanto, A. & Ragadhita, R. (2019). Economic Perspective in the Production of Silver Nanoparticles on the Bacterial Cellulose Membrane as Antibacterial Material. Int. J. Energetica (IJECA)., 4 (1); 17-22.
Onlin, T., Jean, J. S., Lee, P. & Cheau, T. C. (1993). Recovery of silver from photographic film & photographic development waste solution. US5238543 A.
Ramirez, P. A., Reyes, V. E. & Veloz, M. A. (2011). Silver Recovery from Radiographic Films Using an Electrochemical Reactor. Int. J. Electrochem. S., 6; 6151-6164.
Rautela, A., Rani, J. & Debnath, M. (2019). Green synthesis of silver nanoparticles from Tectona grandis seeds extract: characterization & mechanism of antimicrobial action on different microorganisms. J. Anal. Sci. Tech., 10; Article number: 5.
Satyanarayana, D. N. V. & Ramesh Chandra, K. R. (2020). Sliver recovery from waste X Ray photographic films by electro deposition. J. Adv. Chem. Eng., 10 (2); 1-2.
Suess, B. J. (2003). Creative black-&-white photography. All Worth Press., New York-Boston.
Syed, S. (2016). Silver recovery aqueous techniques from diverse sources: Hydrometallurgy in recycling. J. Was. Man., 50; 234-256.
Time life editors. (1976). The Life Library of Photography. 17 volume. USA; Time Life Books.
Yerragopu, P. S., Hiregoudar, S., Nidoni, U., Ramappa, K. T., Sreenivas, A. G. & Doddagoudar, S. R. (2020). Chemical Synthesis of Silver Nanoparticles Using Tri-sodium Citrate, Stability Study & Their Characterization. Int. Res. J. Pure. App. Chem., 21(3); 37-50.
Zhang, Y., Liu, R. J., Ma, X., Liu, X. Y., Zhang, Y. X. & Zhang, J. (2018). Ag nanoparticle decorated MnO2 flakes as flexible SERS substrates for rhodamine 6G detection. J. RSC Advances., 8; 37750-37756.
Zhouxiang, H., Jianying, W., Ma, Z. & Jifan, H. (2008). A method to recover silver from waste X-ray films with spent fixing bath. J. Hydrometallurgy., 92; 148–151.